A modified fuzzy-tuned artificial bee algorithm to optimal location of piezoelectric actuators and sensors for active vibration control of isotropic rectangular plates


In this study, an efficient modified artificial bee colony algorithm is presented to find the optimal location of piezoelectric actuators and sensors for active vibration control of plates. An artificial bee algorithm is a population-based approach utilized to search for the optimal solution using swarm intelligence. There are two searching steps in the proposed algorithm, i.e., the random and the local search. These two search types present the main processes of the algorithm, known as exploration and exploitation. Making a balance between these two processes is important in obtaining the best solution. Therefore, a new technique is proposed herein to keep a balance between exploration and exploitation. In this technique, a fuzzy system is utilized as the parameter tuner in the improved artificial bee colony algorithm for providing the balance between global search and local search. Consequently, the solution of the algorithm approaches the optimal object. The presented algorithm is utilized to determine the optimal placement of piezoelectric sensors and actuators on an isotropic rectangular plate. Ensuring good observability and controllability is considered as the optimization criterion. Also, residual modes are considered to limit the spillover effect. The obtained results indicate the superiority of the proposed approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 9
Fig. 11
Fig. 12


  1. 1.

    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty

  2. 2.

    Li B, Li Y, Gong L (2014) Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model. Eng Appl Artif Intell 27:70–79

    Article  Google Scholar 

  3. 3.

    Gao W, Liu S (2011) Improved artificial bee colony algorithm for global optimization. Inf Process Lett 111:871–882

    MathSciNet  Article  Google Scholar 

  4. 4.

    Manuel M, Elias E (2013) Design of frequency response masking FIR filter in the canonic signed digit space using modified artificial bee colony algorithm. Eng Appl Artif Intell 26:660–668

    Article  Google Scholar 

  5. 5.

    Xiang W-L, An M-Q (2013) An efficient and robust artificial bee colony algorithm for numerical optimization. Comput Oper Res 40:1256–1265

    MathSciNet  Article  Google Scholar 

  6. 6.

    Omkar SN, Senthilnath J, Khandelwal R et al (2011) Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. Appl Soft Comput 11:489–499

    Article  Google Scholar 

  7. 7.

    Kang F, Li J, Li H (2013) Artificial bee colony algorithm and pattern search hybridized for global optimization. Appl Soft Comput 13:1781–1791

    Article  Google Scholar 

  8. 8.

    Michael A, Takagi H (1993) Dynamic control of genetic algorithms using fuzzy logic techniques. In: Proceedings of the Fifth International Conference on Genetic Algorithms. Citeseer, pp 76–83

  9. 9.

    Marinaki M, Marinakis Y, Stavroulakis GE (2010) Fuzzy control optimized by PSO for vibration suppression of beams. Control Eng Pract 18:618–629

    Article  Google Scholar 

  10. 10.

    Bidar M, Kanan HR (2013) Modified firefly algorithm using fuzzy tuned parameters. In: 2013 13th Iranian Conference on Fuzzy Systems (IFSC). IEEE, pp 1–4

  11. 11.

    Neyoy H, Castillo O, Soria J (2015) Fuzzy logic for dynamic parameter tuning in ACO and its application in optimal fuzzy logic controller design. In: Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics. Springer, pp 3–28

  12. 12.

    Premkumar K, Manikandan BV (2016) Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Eng Sci Technol Int J 19:818–840

    Google Scholar 

  13. 13.

    Vatankhah R (2017) Nonlinear vibration of AFM microcantilevers with sidewall probe. J Braz Soc Mech Sci Eng 39:4873–4886

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kumar KR, Narayanan S (2008) Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Mater Struct 17:55008

    Article  Google Scholar 

  15. 15.

    Yang Y, Jin Z, Soh CK (2005) Integrated optimal design of vibration control system for smart beams using genetic algorithms. J Sound Vib 282:1293–1307

    Article  Google Scholar 

  16. 16.

    Liu W, Hou Z, Demetriou MA (2006) A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial H2 measures. Mechan Syst Signal Process 20:881–895

    Article  Google Scholar 

  17. 17.

    Jha AK, Inman DJ (2003) Optimal sizes and placements of piezoelectric actuators and sensors for an inflated torus. J Intell Mater Syst Struct 14:563–576

    Article  Google Scholar 

  18. 18.

    Peng F, Ng A, Hu Y-R (2005) Actuator placement optimization and adaptive vibration control of plate smart structures. J Intell Mater Syst Struct 16:263–271

    Article  Google Scholar 

  19. 19.

    Bruant I, Proslier L (2005) Optimal location of actuators and sensors in active vibration control. J Intell Mater Syst Struct 16:197–206

    Article  Google Scholar 

  20. 20.

    Bruant I, Gallimard L, Nikoukar S (2010) Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. J Sound Vib 329:1615–1635

    Article  Google Scholar 

  21. 21.

    Yassin B, Lahcen A, Zeriab E-SM (2018) Hybrid optimization procedure applied to optimal location finding for piezoelectric actuators and sensors for active vibration control. Appl Math Model 62:701–716

    MathSciNet  Article  Google Scholar 

  22. 22.

    Manohar K, Kutz JN, Brunton SL (2018) Optimal Sensor and Actuator Placement using Balanced Model Reduction. arXiv preprint https://arxiv.org/abs/1812.01574

  23. 23.

    Menuzzi O, Fonseca JSO, Perondi EA et al (2018) Piezoelectric sensor location by the observability Gramian maximization using topology optimization. Comput Appl Math 37:237–252

    MathSciNet  Article  Google Scholar 

  24. 24.

    Yang B, Miao J, Fan Z et al (2018) Modified cuckoo search algorithm for the optimal placement of actuators problem. Appl Soft Comput 67:48–60

    Article  Google Scholar 

  25. 25.

    Vatankhah R, Etemadi S, Honarvar M, et al (2009) Online velocity optimization of robotic swarm flocking using particle swarm optimization (PSO) method. In: 2009 6th International Symposium on Mechatronics and its Applications. IEEE, pp 1–6

  26. 26.

    Vagheesan S, Govindarajalu J (2019) Hybrid neural network–particle swarm optimization algorithm and neural network–genetic algorithm for the optimization of quality characteristics during CO2 laser cutting of aluminium alloy. J Braz Soc Mech Sci Eng 41:328

    Article  Google Scholar 

  27. 27.

    Khaniki HB, Zohoor H, Sohrabpour S (2017) Performance analysis and geometry optimization of metal belt-based continuously variable transmission systems using multi-objective particle swarm optimization. J Braz Soc Mech Sci Eng 39:4289–4303

    Article  Google Scholar 

  28. 28.

    Bruant I, Coffignal G, Lene F, Verge M (2001) A methodology for determination of piezoelectric actuator and sensor location on beam structures. J Sound Vib 243:861–882

    Article  Google Scholar 

  29. 29.

    Hać A, Liu L (1993) Sensor and actuator location in motion control of flexible structures. J Sound Vib 167:239–261

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ramin Vatankhah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karami, M., Vatankhah, R. & Khosravifard, A. A modified fuzzy-tuned artificial bee algorithm to optimal location of piezoelectric actuators and sensors for active vibration control of isotropic rectangular plates. J Braz. Soc. Mech. Sci. Eng. 43, 86 (2021). https://doi.org/10.1007/s40430-020-02769-6

Download citation


  • Modified artificial bee colony
  • Fuzzy tuning
  • Piezoelectric
  • Optimal location
  • Controllability