Robust project of resonant shunt circuit for passive vibration control of composite structures

Abstract

Composite structures have been widely used in petroleum, aerospace and automotive industries for which structural components must be designed to support high levels of mechanical disturbances with typically high reliability levels. Moreover, the increasing high-speed and lightweight composite structures subjected to vibrations, and the interest in achieving vibration attenuation becomes capital importance as extensive vibrations can reduce structural life and contribute to mechanical failure. In this sense, smart materials can be used as an excellent alternative, being able to stabilize these structures. Thus, the use of shunted piezoceramics has received major attention in the last decades. The contribution intended herein is the proposition of a robust passive vibration control tool by using resonant shunt circuits. The stochastic finite element method is used, and the uncertain variables are modeled as Gaussian random fields and discretized in accordance with the Karhunen–Loève expansion method. Numerical applications are presented, and the main features and capabilities of the proposed method are highlighted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press, New York

    Google Scholar 

  2. 2.

    Gay D, Hoa SV, Tsai SW (2003) Composite materials: design and applications. CRC Press, New York

    Google Scholar 

  3. 3.

    de Marqui Jr C, Vieira WGR, Erturk A, Inman DJ (2011) Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using doublet-lattice method. J Vib Acoust 133:1–9. https://doi.org/10.1115/1.4002785

    Article  Google Scholar 

  4. 4.

    Almeida A, Donadon MV, Almeida S (2012) The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite planel. Compos Struct 94:3601–3611. https://doi.org/10.1016/j.compstruct.2012.06.008

    Article  Google Scholar 

  5. 5.

    Santos HFL, Trindade MA (2011) Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties. J Braz Soc Mech Sci Eng 33:287–301. https://doi.org/10.1590/S1678-58782011000300004

    Article  Google Scholar 

  6. 6.

    Trindade MA, Pagani CC, Oliveira LPR (2015) Semi-modal active vibration control of plates using discrete piezoelectric modal filters. J Sound Vib 351:17–28. https://doi.org/10.1016/j.jsv.2015.04.034

    Article  Google Scholar 

  7. 7.

    Hagood NW, Flotow AHV (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146:243–268. https://doi.org/10.1016/0022-460X(91)90762-9

    Article  Google Scholar 

  8. 8.

    Viana FAC, Steffen V Jr (2006) Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits. J Braz Soc Mech Sci Eng 28:293–310. https://doi.org/10.1590/S1678-58782006000300007

    Article  Google Scholar 

  9. 9.

    Leão LS, de Lima AMG, Donadon MV, Cunha-Filho AG (2016) Dynamic and aeroelastic behavior of composite plates with multimode resonant shunted piezoceramics in series. Compos Struct 153:815–824. https://doi.org/10.1016/j.compstruct.2016.07.010

    Article  Google Scholar 

  10. 10.

    Reis CJB, Manzanares-Filho N, de Lima AMG (2019) Robust optimization of aerodynamic loadings for airfoil inverse designs. J Braz Soc Mech Sci Eng 41:207. https://doi.org/10.1007/s40430-019-1705-z

    Article  Google Scholar 

  11. 11.

    Koroishi EH, Cavalini AAP Jr, de Lima AMG, Steffen V Jr (2012) Stochastic modeling of flexible rotors. J Braz Soc Mech Sci Eng 34:574–583. https://doi.org/10.1590/S1678-58782012000600006

    Article  Google Scholar 

  12. 12.

    Zambolini-Vicente BGGL, Silva VAC, de Lima AMG (2015) Robust design of multimodal shunt circuits for vibration attenuation of composites structures. Int J Automot Compos 1:258–280. https://doi.org/10.1504/IJAUTOC.2015.070556

    Article  Google Scholar 

  13. 13.

    Gonçalves LKS, Rosa UL, de Lima AMG (2019) Fatigue damage investigation and optimization of a viscoelastically damped system with uncertainties. J Braz Soc Mech Sci Eng 41:382. https://doi.org/10.1007/s40430-019-1879-4

    Article  Google Scholar 

  14. 14.

    de Lima AMG, Rade DA, Bouhaddi N (2010) Stochastic modeling of surface viscoelastic treatments combined with model condensation procedures. Shock Vib 17:429–444. https://doi.org/10.3233/SAV-2010-0538

    Article  Google Scholar 

  15. 15.

    Silva VAC, de Lima AMG, Ribeiro LP, da Silva AR (2019) Uncertainty propagation and numerical evaluation of viscoelastic sandwich plates having nonlinear behavior. J Vib Control 26:447–458. https://doi.org/10.1177/1077546319889816

    Article  Google Scholar 

  16. 16.

    Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York. https://doi.org/10.1007/978-1-4612-3094-6

    Google Scholar 

  17. 17.

    Florian A (1992) An efficient sampling scheme: updates Latin Hypercube sampling. Probab Eng Mech 7:123–130. https://doi.org/10.1016/0266-8920(92)90015-A

    Article  Google Scholar 

  18. 18.

    Chee C, Tong L, Steven GP (2000) A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation. Comput Struct 77:253–268. https://doi.org/10.1016/S0045-7949(99)00225-4

    Article  Google Scholar 

  19. 19.

    Saravanos D, Heyliger P (1995) Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators. J Intell Mater Syst Struct 6:350–363. https://doi.org/10.1177/1045389X9500600306

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq for the continued support to their research activities through the research grant 306138/2019-0 (A.M.G. de Lima). It is also important to express the acknowledgements to the FAPEMIG, especially to the research projects APQ-01865 and PPM-0058-18 (A.M.G. de Lima) and APQ-01865-18 (Manzanares-Filho).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. P. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: José Roberto de França Arruda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, L.P., de Lima, A.M.G. & Silva, V.A.C. Robust project of resonant shunt circuit for passive vibration control of composite structures. J Braz. Soc. Mech. Sci. Eng. 42, 342 (2020). https://doi.org/10.1007/s40430-020-02396-1

Download citation

Keywords

  • Stochastic modeling
  • Composite materials
  • Passive vibration control
  • Piezoelectric shunt circuits
  • Uncertainty propagation