Skip to main content

Advertisement

Log in

A comparative finite element simulation of stress in dental implant–bone interface using isotropic and orthotropic material models in three mastication cycles

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Although functionally graded biomaterials (FGBMs) have recently been employed in the dental implants, the role of mechanical complications in the FGBMs, i.e., isotropicity or orthotopicity, has not been well understood. This study, hence, was aimed at investigating the effects of a special type of FGBM implant in stress distribution of bone–implant interface using finite element method. Meanwhile, the effects of simplifications, such as presuming isotropic material model instead of an orthotropic one for a jaw bone, and applying a small deflection effect as a replacement for a large deflection effect in the stress–strain calculation were also examined. The results revealed that the FGBM implants can diminish the maximum stress in the implant–bone interface. In addition, although the amount of maximum strain in the bone and implant were low, considering a small deflection effect instead of a large deflection one showed to have a considerable influence in the stress and the displacement of the implant–bone system. The orthotropic bone also indicated a large amount of stress compared with the isotropic one which implies the importance of material models in simulating the stresses and displacements of the implant–bone system. These results have implications not only for understanding the stresses and displacements in the implant–bone interface, but also for providing a comprehensive information for the biomechanical experts to pay enough attention to the material models being employed in their numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

iso:

Isotrope

ortho:

Orthotrope

LD:

Large deflection

SD:

Small deflection

C :

Conventional implant

HA:

Hydroxyapatite

E :

Elastic modulus

E 0 :

Reference value of E

n 1 :

Material parameter

β :

Material parameter, β = 0.9 (22)

E out :

Elasticity modulus of outer layer

r :

Radial coordinate

b :

Outer radius

E X :

Young’s modulus X direction

E Y :

Young’s modulus Y direction

E Z :

Young’s modulus Z direction

ν XY :

Poisson’s ratio XY

ν YZ :

Poisson’s ratio YZ

ν XZ :

Poisson’s ratio XZ

G XY :

Shear modulus XY

G YZ :

Shear modulus YZ

G XZ :

Shear modulus XZ

Ρ :

Density

Ɛ :

Strain

Σ :

Stress

T i :

Titanium

T :

Time

References

  1. Ao J, Li T, Liu Y, Ding Y, Wu G, Hu K et al (2010) Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis. Comput Biol Med 40(8):681–686

    Article  Google Scholar 

  2. Bahraminasab M, Sahari B, Edwards K, Farahmand F, Hong TS, Arumugam M et al (2014) Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Mater Des 53:159–173

    Article  Google Scholar 

  3. Bakan F, Laçin O, Sarac H (2013) A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 233:295–302

    Article  Google Scholar 

  4. Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimli A (2008) Synthesis and characterization of hydroxyapatite nanoparticles. Coll Surf A Physicochem Eng Asp 322(1):29–33

    Article  Google Scholar 

  5. Chen L-J, Hao H, Li Y-M, Ting L, Guo X-P, Wang R-F (2011) Finite element analysis of stress at implant–bone interface of dental implants with different structures. Trans Nonferrous Metals Soc China 21(7):1602–1610

    Article  Google Scholar 

  6. Clift SE, Fisher J, Watson C (1992) Finite element stress and strain analysis of the bone surrounding a dental implant: effect of variations in bone modulus. Proc Inst Mech Eng H 206(4):233–241

    Article  Google Scholar 

  7. Clift SE, Fisher J, Watson C (1993) Stress and strain distribution in the bone surrounding a new design of dental implant: a comparison with a threaded Branemark type implant. Proc Inst Mech Eng H 207(3):133–138

    Article  Google Scholar 

  8. Coathup M, Blunn G, Flynn N, Williams C, Thomas N (2001) A comparison of bone remodelling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem. Bone Joint J 83(1):118–123

    Article  Google Scholar 

  9. Demenko V, Linetskiy I, Nesvit K, Hubalkova H, Nesvit V, Shevchenko A (2014) Importance of diameter-to-length ratio in selecting dental implants: a methodological finite element study. Comput Methods Biomech Biomed Eng 17(4):443–449

    Article  Google Scholar 

  10. Desmet JB, Bosman AJ, Snik AF, Lambrechts P, Hol MK, Mylanus EA et al (2013) Comparison of sound processing strategies for osseointegrated bone conduction implants in mixed hearing loss: multiple-channel nonlinear versus single-channel linear processing. Otol Neurotol 34(4):598–603

    Article  Google Scholar 

  11. Ding X, Liao S-H, Zhu X-H, Wang H-M, Zou B-J (2015) Effect of orthotropic material on finite element modeling of completely dentate mandible. Mater Des 84:144–153

    Article  Google Scholar 

  12. Edmiston R, Aggarwal R, Green K (2015) Bone conduction implants-a rapidly developing field. J Laryngol Otol 129(10):936

    Article  Google Scholar 

  13. Ekici B (2002) Numerical analysis of a dental implant system in three-dimension. Adv Eng Software. 33(2):109–113

    Article  Google Scholar 

  14. Enab TA (2012) A comparative study of the performance of metallic and FGM tibia tray components in total knee replacement joints. Comput Mater Sci 53(1):94–100

    Article  Google Scholar 

  15. Farnoush H, Mohandesi JA, Fatmehsari DH, Moztarzadeh F (2012) Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4 V substrates. Ceram Int 38(6):4885–4893

    Article  Google Scholar 

  16. Hedia H (2005) Design of functionally graded dental implant in the presence of cancellous bone. J Biomed Mater Res B Appl Biomater 75(1):74–80

    Article  Google Scholar 

  17. Jalali SK, Yarmohammadi R, Maghsoudi F (2016) Finite element stress analysis of functionally graded dental implant of a premolar tooth. J Mech Sci Technol 30(11):4919–4923

    Article  Google Scholar 

  18. Jiang L, Kong L, Li T, Gu Z, Hou R, Duan Y (2009) Optimal selections of orthodontic mini-implant diameter and length by biomechanical consideration: a three-dimensional finite element analysis. Adv Eng Softw 40(11):1124–1130

    Article  Google Scholar 

  19. Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F (2006) Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 37(10):649–658

    Article  Google Scholar 

  20. Kong L, Liu B, Li D, Song Y, Zhang A, Dang F et al (2006) Comparative study of 12 thread shapes of dental implant designs: a three-dimensional finite element analysis. World J Model Simul 2(2):134–140

    Google Scholar 

  21. Kong L, Zhao Y, Hu K, Li D, Zhou H, Wu Z et al (2009) Selection of the implant thread pitch for optimal biomechanical properties: a three-dimensional finite element analysis. Adv Eng Softw 40(7):474–478

    Article  Google Scholar 

  22. Korabi R, Shemtov-Yona K, Dorogoy A, Rittel D (2017) The failure envelope concept applied to the bone-dental implant system. Sci Rep 7(1):2051

    Article  Google Scholar 

  23. Lazarinis S, Kärrholm J, Hailer NP (2010) Increased risk of revision of acetabular cups coated with hydroxyapatite: a Swedish Hip Arthroplasty Register study involving 8043 total hip replacements. Acta Orthop 81(1):53–59

    Article  Google Scholar 

  24. Lin D, Li Q, Li W, Swain M (2009) Dental implant induced bone remodeling and associated algorithms. J Mech Behav Biomed Mater 2(5):410–432

    Article  Google Scholar 

  25. Liu J, Pan S, Dong J, Mo Z, Fan Y, Feng H (2013) Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis. J Dent 41(3):241–249

    Article  Google Scholar 

  26. Mehrali M, Shirazi FS, Mehrali M, Metselaar HSC, Kadri NAB, Osman NAA (2013) Dental implants from functionally graded materials. J Biomed Mater Res A 101(10):3046–3057

    Article  Google Scholar 

  27. Merdji A, Bouiadjra BB, Achour T, Serier B, Chikh BO, Feng Z (2010) Stress analysis in dental prosthesis. Comput Mater Sci 49(1):126–133

    Article  Google Scholar 

  28. Monmaturapoj N (2017) Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J Metals Mater Miner 18(1):15–20

    Google Scholar 

  29. Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25(17):3829–3835

    Article  Google Scholar 

  30. Nayak AK (2010) Hydroxyapatite synthesis methodologies: an overview. Int J ChemTech Res 2(2):903–907

    Google Scholar 

  31. Ojeda J, Martínez-Reina J, García-Aznar J, Domínguez J, Doblaré M (2011) Numerical simulation of bone remodelling around dental implants. Proc Inst Mech Eng H 225(9):897–906

    Article  Google Scholar 

  32. Oshkour A, Abu Osman N, Yau Y, Tarlochan F, Wan Abas W (2013) Design of new generation femoral prostheses using functionally graded materials: a finite element analysis. Proc Inst Mech Eng H 227(1):3–17

    Article  Google Scholar 

  33. Pérez M, Prados-Frutos J, Bea J, Doblaré M (2012) Stress transfer properties of different commercial dental implants: a finite element study. Comput Methods Biomech Biomed Eng 15(3):263–273

    Article  Google Scholar 

  34. Riss D, Arnoldner C, Baumgartner WD, Blineder M, Flak S, Bachner A et al (2014) Indication criteria and outcomes with the Bonebridge transcutaneous bone-conduction implant. Laryngoscope 124(12):2802–2806

    Article  Google Scholar 

  35. Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8):2785–2792

    Article  Google Scholar 

  36. Sadollah A, Bahreininejad A (2012) Optimum functionally gradient materials for dental implant using simulated annealing. Simulated annealing-single and multiple objective problems: InTech

    Google Scholar 

  37. Sazesh S, Ghassemi A, Ebrahimi R, Khodaei M (2017) Experimental and numerical analysis of titanium/ha fgm for dental implantation. Int J Adv Des Manuf Tech 10(1):57–74

    Google Scholar 

  38. Macedo JP, Pereira J, Faria J, Pereira CA, Alves JL, Henriques B et al (2017) Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. J Mech Behav Biomed Mater 71(7):441–447

    Article  Google Scholar 

  39. Shirazi HA, Ayatollahi M (2014) Biomechanical analysis of functionally graded biomaterial disc in terms of motion and stress distribution in lumbar spine. Int J Eng Sci 84:62–78

    Article  Google Scholar 

  40. Shirazi HA, Ayatollahi M, Karimi A, Navidbakhsh M (2017) A comparative finite element analysis of two types of axial and radial functionally graded dental implants with titanium one around implant-bone interface. Sci Eng Compos Mater 24(5):747–754

    Article  Google Scholar 

  41. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    Article  Google Scholar 

  42. Wakabayashi N, Ona M, Suzuki T, Igarashi Y (2008) Nonlinear finite element analyses: advances and challenges in dental applications. J Dent 36(7):463–471

    Article  Google Scholar 

  43. We M, Ruys A, Swain M, Milthorpe B, Sorrell C (2005) Hydroxyapatite-coated metals: interfacial reactions during sintering. J Mater Sci Mater Med 16(2):101–106

    Article  Google Scholar 

  44. Yang J, Xiang H-J (2007) A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. J Biomech 40(11):2377–2385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Karimi.

Ethics declarations

Conflict of interest

None.

Additional information

Technical Editor: Estevam Barbosa Las Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, R.A., Jarrahi, A., Farnoosh, G. et al. A comparative finite element simulation of stress in dental implant–bone interface using isotropic and orthotropic material models in three mastication cycles. J Braz. Soc. Mech. Sci. Eng. 40, 489 (2018). https://doi.org/10.1007/s40430-018-1409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1409-9

Keywords

Navigation