Skip to main content
Log in

Investigation of mechanical error in four-bar mechanism under the effects of link tolerance

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Many planar manipulators are composed of a basic four-bar mechanism. The output delivered by the mechanism deviates from desired one due to factors like link tolerances. The performance needs to be characterized for satisfactory application. This article presents investigation of mechanical error in four-bar mechanism with revolute joints (4R) under the influence of link tolerance. The classical partial derivative formulation (PDA) in uncertainty analysis technique is primarily used for estimating the mechanical error. The error estimation is carried out with proposed modification in PDA formulation. A geometric approach is also developed to estimate the mechanical error for 4R configuration. The mechanical error obtained through PDA is verified using geometric approach. The generalized formulation is demonstrated, and comparative estimation is presented. The methods and conclusions proposed herewith are adaptable for other planar configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Jaiswal A, Jawale HP (2017) Comparative study of four-bar hyperbolic function generation mechanism with four and five accuracy points. Arch Appl Mech 87(12):2037–2054. https://doi.org/10.1007/s00419-017-1310-5

    Article  Google Scholar 

  3. Sandor GN, Erdman AG (1984) Advanced mechanism design: analysis and synthesis. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  4. Chakraborty J (1975) Synthesis of mechanical error in linkages. Mech Mach Theory 10(2):155–165. https://doi.org/10.1016/0094-114X(75)90016-6

    Article  Google Scholar 

  5. Dhande SG, Chakraborty J (1973) Analysis and synthesis of mechanical error in linkages-a stochastic approach. J Eng Ind 95(3):672–676

    Article  Google Scholar 

  6. Du X, Venigella PK, Liu D (2009) Robust mechanism synthesis with random and interval variables. Mech Mach Theory 44(7):1321–1337. https://doi.org/10.1016/j.mechmachtheory.2008.10.003

    Article  MATH  Google Scholar 

  7. Chen F-C, Tzeng Y-F, Hsu M-H, Chen W-R (2010) Combining taguchi method, principal component analysis and fuzzy logic to the tolerance design of a dual-purpose six-bar mechanism. Trans Can Soc Mech Eng 34(2):277–293. https://doi.org/10.1139/tcsme-2010-0017

    Article  Google Scholar 

  8. Garrett RE, Hall AS (1969) Effect of tolerance and clearance in linkage design. J Eng Ind 91(1):198–202

    Article  Google Scholar 

  9. Lee SJ, Gilmore BJ, Ogot MM (1993) Dimensional tolerance allocation of stochastic dynamic mechanical systems through performance and sensitivity analysis. J Mech Des 115(3):392–402

    Article  Google Scholar 

  10. Rhyu JH, Kwak BM (1988) Optimal stochastic design of four-bar mechanisms for tolerance and clearance. J Mech Transm Autom Des 110(3):255–262

    Article  Google Scholar 

  11. Sharfi O, Smith M (1983) A simple method for the allocation of appropriate tolerances and clearances in linkage mechanisms. Mech Mach Theory 18(2):123–129. https://doi.org/10.1016/0094-114X(83)90104-0

    Article  Google Scholar 

  12. Tsai M-J, Lai T-H (2004) Kinematic sensitivity analysis of linkage with joint clearance based on transmission quality. Mech Mach Theory 39(11):1189–1206. https://doi.org/10.1016/j.mechmachtheory.2004.05.009

    Article  MATH  Google Scholar 

  13. Wu J, Purwar A, Ge Q (2010) Interactive dimensional synthesis and motion design of planar 6R single-loop closed chains via constraint manifold modification. J Mech Robot 2(3):031012

    Article  Google Scholar 

  14. Zhang J, Du X (2011) Time-dependent reliability analysis for function generator mechanisms. J Mech Des 133(3):031005

    Article  Google Scholar 

  15. Augustynek K, Adamiec-Wójcik I (2012) Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors. Arch Appl Mech 82(2):283–295

    Article  MATH  Google Scholar 

  16. Choi J-H, Lee S-J, Choi D-H (1998) Stochastic linkage modeling for mechanical error analysis of planar mechanisms. J Struct Mech 26(3):257–276

    Google Scholar 

  17. Dubowsky S, Gardner TN (1975) Dynamic interactions of link elasticity and clearance connections in planar mechanical systems. J Eng Ind 97(2):652–661

    Article  Google Scholar 

  18. Flores P (2015) On the study of the kinematic position errors due to manufacturing and assembly tolerances. In: Kecskeméthy A, Geu Flores F (eds) Interdisciplinary applications of kinematics. Mechanisms and machine science, vol 26. Springer, Cham

    Google Scholar 

  19. Kolhatkar SA, Yajnik KS (1970) The effects of play in the joints of a function-generating mechanism. J Mech 5(4):521–532

    Article  Google Scholar 

  20. Li X, Ding X, Chirikjian GS (2015) Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech Mach Theory 91:69–85

    Article  Google Scholar 

  21. Mallik AK, Dhande SG (1987) Analysis and synthesis of mechanical error in path-generating linkages using a stochastic approach. Mech Mach Theory 22(2):115–123

    Article  Google Scholar 

  22. Nzue R-MA, Brethé JF, Vasselin E, Lefebvre D (2010) Comparative analysis of the repeatability performance of a serial and parallel robot. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 63–68

  23. Rao SS, Reddy CP (1979) Mechanism design by chance constrained programming techniques. Mech Mach Theory 14(6):413–424

    Article  Google Scholar 

  24. Ting K-L, Liu Y-W (1991) Rotatability laws for n-bar kinematic chains and their proof. J Mech Des 113(1):32–39

    Article  Google Scholar 

  25. Ting K-L, Zhu J, Watkins D (2000) The effects of joint clearance on position and orientation deviation of linkages and manipulators. Mech Mach Theory 35(3):391–401

    Article  MATH  Google Scholar 

  26. Zhang X, Zhang X (2016) A comparative study of planar 3-rrr and 4-rrr mechanisms with joint clearances. Robot Comput Integr Manuf 40:24–33

    Article  Google Scholar 

  27. Zhu J, Ting K-L (2000) Uncertainty analysis of planar and spatial robots with joint clearances. Mech Mach Theory 35(9):1239–1256

    Article  Google Scholar 

  28. Erkaya S (2017) Effects of joint clearance on motion accuracy of robotic manipulators. J Mech Eng (in press). http://www.sv-jme.eu/article/effects-of-joint-clearance-on-motion-accuracy-of-robotic-manipulators

  29. Erkaya S, Uzmay I (2008) A neuralgenetic (nn-ga) approach for optimising mechanisms having joints with clearance. Multibody Syst Dyn 20(1):69–83

    Article  MathSciNet  MATH  Google Scholar 

  30. Erkaya S, Uzmay I (2009a) Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech Mach Theory 44(1):222–234

    Article  MATH  Google Scholar 

  31. Erkaya S, Uzmay I (2010) Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody Syst Dyn 24(1):81–102

    Article  MATH  Google Scholar 

  32. Erkaya S, Uzmay B (2014) Modeling and simulation of joint clearance effects on mechanisms having rigid and flexible links. J Mech Sci Technol 28(8):2979–2986

    Article  Google Scholar 

  33. Erkaya S (2012a) Effects of balancing and link flexibility on dynamics of a planar mechanism having joint clearance. Sci Iran 19(3):483–490

    Article  Google Scholar 

  34. Erkaya S, Uzmay İ (2009b) Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn 58(1–2):179

    Article  MATH  Google Scholar 

  35. Erkaya S (2013) Trajectory optimization of a walking mechanism having revolute joints with clearance using anfis approach. Nonlinear Dyn 71(1–2):75–91

    Article  MathSciNet  Google Scholar 

  36. Meng J, Zhang D, Li Z (2009) Accuracy analysis of parallel manipulators with joint clearance. J Mech Des 131(1):011013

    Article  Google Scholar 

  37. Li-Xin X, Yong-Gang L (2014) Investigation of joint clearance effects on the dynamic performance of a planar 2-dof pick-and-place parallel manipulator. Robot Comput Integr Manuf 30(1):62–73

    Article  Google Scholar 

  38. Tsai M-J, Lai T-H (2008) Accuracy analysis of a multi-loop linkage with joint clearances. Mech Mach Theory 43(9):1141–1157

    Article  MATH  Google Scholar 

  39. Tian Q, Flores P, Lankarani HM (2018) A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech Mach Theory 122:1–57

    Article  Google Scholar 

  40. Erkaya S (2012b) Investigation of joint clearance effects on welding robot manipulators. Robot Comput Integr Manuf 28(4):449–457

    Article  Google Scholar 

  41. Jawale HP, Thorat HT (2013) Positional error estimation in serial link manipulator under joint clearances and backlash. J Mech Robot 5(2):021003

    Article  Google Scholar 

  42. Jawale H, Thorat H (2014) Positional accuracy analysis in serial chain and four-bar closed chain manipulator. In: ASME 2014 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp V011T14A010–V011T14A010

  43. Choubey M, Rao AC (1982) Synthesizing linkages with minimal structural and mechanical error based upon tolerance allocation. Mech Mach Theory 17(2):91–97. https://doi.org/10.1016/0094-114X(82)90039-8

    Article  Google Scholar 

  44. Flores P (2011) A methodology for quantifying the kinematic position errors due to manufacturing and assembly tolerances. Strojniški vestnik-J Mech Eng 57(6):457–467. https://doi.org/10.5545/sv-jme.2009.159

    Article  Google Scholar 

  45. Lakshminarayana K, Narayanamurthi R (1971) On the analysis of the effect of tolerances in linkages. J Mech 6(1):59–67

    Article  Google Scholar 

  46. Agarwal S, Bandyopadhyay S (2017) Design of six-bar function generators using dual-order structural error and analytical mobility criteria. Mech Mach Theory 116:326–351. https://doi.org/10.1016/j.mechmachtheory.2017.04.016

    Article  Google Scholar 

  47. Karan B, Vukobratović M (1994) Calibration and accuracy of manipulation robot models an overview. Mech Mach Theory 29(3):479–500

    Article  Google Scholar 

  48. Popescu I, Marghitu DB, Stoenescu ED (2006) Kinematic chains with independent loops and spatial system groups. Arch Appl Mech 75(10):739–754

    Article  MATH  Google Scholar 

  49. Zhan Z, Zhang X, Jian Z, Zhang H (2018) Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties. Mech Mach Theory 124:55–72

    Article  Google Scholar 

  50. Caro S, Binaud N, Wenger P (2009) Sensitivity analysis of 3-rpr planar parallel manipulators. J Mech Des 131(12):121005

    Article  MATH  Google Scholar 

  51. Hafezipour M, Khodaygan S (2017) An uncertainty analysis method for error reduction in end-effector of spatial robots with joint clearances and link dimension deviations. Int J Comput Integr Manuf 30(6):653–663

    Article  Google Scholar 

  52. Khodaygan S, Hafezipour M (2015) Error reduction in spatial robots based on the statistical uncertainty analysis. SAE Int J Mater Manuf 8(2015–01–0435):263–270

    Google Scholar 

  53. Ting K-L, Long Y (1996) Performance quality and tolerance sensitivity of mechanisms. Trans Am Soc Mech Eng J Mech Des 118:144–150

    Google Scholar 

  54. Wu W, Rao SS (2004) Interval approach for the modeling of tolerances and clearances in mechanism analysis. Trans Am Soc Mech Eng J Mech Des 126(4):581–592

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Jaiswal.

Additional information

Technical Editor: Victor Juliano De Negri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawale, H.P., Jaiswal, A. Investigation of mechanical error in four-bar mechanism under the effects of link tolerance. J Braz. Soc. Mech. Sci. Eng. 40, 383 (2018). https://doi.org/10.1007/s40430-018-1299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1299-x

Keywords

Navigation