Cable-driven lower limb rehabilitation robot

  • André M. Barbosa
  • João Carlos M. Carvalho
  • Rogério S. Gonçalves
Technical Paper
  • 2 Downloads

Abstract

This paper describes a low-cost cable-driven manipulator robot for lower limb rehabilitation, designed for the population with gait impairments, such as those with cerebral palsy or stroke. The robot is composed by a fixed base and a mobile platform (orthoses) that can be connected to one cable, or at most six, and can perform the individual movements of the hip, the knee, and the ankle. It starts with a review of the different mechanical systems developed and applied for lower limb rehabilitation. After, the proposed structure is detailed. Finally, the numerical and experimental tests of the cable-driven parallel structure for lower limb rehabilitation movements are outlined, showing the viability of the proposed structure.

Keywords

Cable-driven manipulator Lower limb Rehabilitation Robots 

Notes

Acknowledgements

This work was supported in part by CNPq, UFU, CAPES, and FAPEMIG.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    MacLennan AH, Thompson SC, Gecz J (2015) Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 213(6):779–788CrossRefGoogle Scholar
  2. 2.
    MacDonald MG, Seshia MMK (2015) Avery’s neonatology pathophysiology and management of the newborn, 7th edn. LWW, PhiladelphiaGoogle Scholar
  3. 3.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, On Behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–e360CrossRefGoogle Scholar
  4. 4.
    Claflin ES, Krishnan C, Khot SP (2015) Emerging treatments for motor rehabilitation after stroke. Neurohospitalist 5(2):77–88CrossRefGoogle Scholar
  5. 5.
    van der Krogt MM (2009) Gait deviations in children with cerebral palsy: a modeling approach. Doctor Academisch Proefschrift, Vrije Universiteit, Ipskamp Drukkers BV, Ensched, pp 1–152Google Scholar
  6. 6.
    Eng JJ, Tang PF (2007) Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother 7(10):1417–1436CrossRefGoogle Scholar
  7. 7.
    Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot.  https://doi.org/10.1155/2011/759764 Google Scholar
  8. 8.
    Dzahir MAM, Yamamoto S-I (2014) Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3:120–148CrossRefGoogle Scholar
  9. 9.
    Goncalves RS, Carvalho JCM, Ribeiro JF, Salim VV (2015) Cable-driven robot for upper and lower limbs rehabilitation. In: Handbook of research on advancements in robotics and mechatronics, 1st edn. IGI Global, pp 284–315.  https://doi.org/10.4018/978-1-4666-7387-8.ch011
  10. 10.
    Susko TG (2015) MIT skywalker: a novel robot for gait rehabilitation of stroke and cerebral palsy patients. Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  11. 11.
    Louie DR, Janice J (2016) Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J NeuroEng Rehabil 13:53CrossRefGoogle Scholar
  12. 12.
    Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, Dobkin BH, Rose DK, Tilson JK et al. (2007) Protocol for the locomotor experience applied post-stroke (LEAPS) trial: a randomized controlled trial. BMC Neurol 7:39CrossRefGoogle Scholar
  13. 13.
    Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, Dobkin BH, Rose DK, Tilson JK, Cen S, Hayden SK (2011) Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med 364(21):2026–2036CrossRefGoogle Scholar
  14. 14.
    Dobkin B, Duncan P (2012) Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair 26(4):308–317CrossRefGoogle Scholar
  15. 15.
    Gonçalves RS, Carvalho JCM (2012) Robot modeling for physical rehabilitation. In: Service robots and robotics design and application. An imprint of IGI Global, pp 154–175.  https://doi.org/10.4018/978-1-4666-0291-5.ch009
  16. 16.
    Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, van Asseldonk EHF, van der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386CrossRefGoogle Scholar
  17. 17.
    Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: IEEE 10th international conference on rehabilitation robotics, 2007. ICORR 2007, pp 401–407Google Scholar
  18. 18.
    Rupp R, Plewa H, Hofer EP, Knestel M (2009) Motion Therapy@Home—a robotic device for automated locomotion therapy at home. In: IEEE 11th international conference on rehabilitation robotics, Kyoto, JapanGoogle Scholar
  19. 19.
    Hesse S, Uhlenbrock D (2000) A mechanized gait trainer for restoration of gait. J Rehabil Res Dev 37(6):701–708Google Scholar
  20. 20.
    Schmidt H, Werner C, Bernhardt R, Hesse S, Krger J (2007) Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 4(1):2CrossRefGoogle Scholar
  21. 21.
    Hesse S, Waldner A, Tomelleri C (2010) Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J NeuroEng Rehabil 7:30CrossRefGoogle Scholar
  22. 22.
    Cannella G, Ottaviano E, Castelli G (2008) A cable-based system for aiding elderly people in sit to stand transfer. In: Proceedings of the international symposium on multibody systems and mechatronics- MUSME, pp 8–12Google Scholar
  23. 23.
    Hiller M, Hirsch K, Bruckmann T, Brandt T, Schramm D (2009) Common aspects in methods for the design of mechatronic systems—applications in automotive and robotic systems. In: XII international symposium on dynamic problems of mechanics, Angra dos Reis, RJGoogle Scholar
  24. 24.
    Tavolieri C (2008) Design of a cable-based parallel manipulator for rehabilitation applications. Ph.D. dissertation, University of Cassino, Italy, and INRIA, FranceGoogle Scholar
  25. 25.
    Surdilovic D, Bernhardt R (2004) STRING-MAN: a new wire robot for gait rehabilitation. In: IEEE international conference on robotics and automation—ICRA 2004, New Orleans, pp 2031–2036Google Scholar
  26. 26.
    Surdilovic D, Zhang J, Bernhardt R (2007) STRING-MAN: wire-robot technology for safe, flexible and human-friendly gait rehabilitation. In: IEEE 10th international conference on rehabilitation robotics, Noordwijk, pp 446–453Google Scholar
  27. 27.
    Wu M, Landry JM, Kim J, Schmit BD, Yen S-C, MacDonald J (2014) Robotic resistance/assistance training improves locomotor function in individuals poststroke: a randomized controlled study. Arch Phys Med Rehabil 95:799–806CrossRefGoogle Scholar
  28. 28.
    Harshe M (2012) A multi-sensor, cable-driven parallel manipulator base lower limb rehabilitation device: design and analysis. Thesis, Sciences et technologies de l’information et de la communicationGoogle Scholar
  29. 29.
    Nunes WM, Rodrigues LAO, Oliveira LP, Ferreira WRB, Ribeiro JF, Carvalho JCM, Gonçalves RS (2011) Sistema de Controle do CaMaReS. In: DINCON 2011 - 10ª Conferência Brasileira de Dinâmica, Controle e Aplicações, 2011, Águas de Lindóia, SP. 10ª Conferência Brasileira de Dinâmica, Controle e AplicaçõesGoogle Scholar
  30. 30.
    Barbosa AM (2013) Desenvolvimento de um dispositivo robótico atuado por cabos para reabilitação do membro inferior humano. Master’s Degree, Universidade Federal de UberlândiaGoogle Scholar
  31. 31.
    Gonçalves RS, Lobato FS, Carvalho JCM (2016) Design of a robotic device actuated by cables for human lower limb rehabilitation using self-adaptive differential evolution and robust optimization. Biosci J 32:1689–1702 (online) CrossRefGoogle Scholar
  32. 32.
    Gonçalves RS, Carvalho JCM, Rodrigues LAO, Barbosa AM (2014) Cable-driven parallel manipulator for lower limb rehabilitation. Appl Mech Mater 459:535–542CrossRefGoogle Scholar
  33. 33.
    Côté G (2003) Analyse et conception de mécanismes parallèles actionnés par cables. Ph.D. dissertation, Université Laval, Quebec (in French) Google Scholar
  34. 34.
    Kapandji AI (2010) The physiology of the joints, volume 2: lower limb, 6th edn. Churchill Livingstone, LondonGoogle Scholar
  35. 35.
    Akdogan E (2016) Upper limb rehabilitation robot for physical therapy: desing, control, and testing. Turkish J Electr Eng Comput Sci 24:911–934CrossRefGoogle Scholar
  36. 36.
    Kontson K, Marcus I, Myklesbust B, Civilico E (2017) Targeted box and blocks test: normative data and comparison to standard tests. PLoS ONE 12(5):e0177965CrossRefGoogle Scholar
  37. 37.
    Ertzgaard P, Ohberg F, Gerdle B, Grip H (2016) A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors—a validity study. Man Ther 21:241–249CrossRefGoogle Scholar
  38. 38.
    Goffredo M, Bernabucci I, Schmid M, Conforto S (2008) A neural tracking and motor control approach to improve rehabilitation of upper limb movements. J NeuroEng Rehabil 5(5):1–12.  https://doi.org/10.1186/1743-0003-5-5 Google Scholar
  39. 39.
    Martins T, Carvalho V, Soares F (2013) Application for physiotherapy and tracking of patients with neurological diseases—preliminary studies. In: IEEE 2nd international conference on serious games and applications for health (SeGAH), pp 1–8.  https://doi.org/10.1109/SeGAH.2013.6665317
  40. 40.
    Kurillo G, Chen A, Bajcsy R, Han JJ (2013) Evaluation of upper extremity reachable workspace using Kinect camera. Technol Health Care 21:641–656Google Scholar
  41. 41.
    Bai L, Pepper MG, Yan Y, Spurgeon SK, Sakel M, Phillips M (2015) Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors. IEEE Trans Neural Syst Rehabil Eng 23(2):232–243CrossRefGoogle Scholar
  42. 42.
    Hidler J, Wisman W, Neckel N (2008) Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech 23:1251–1259CrossRefGoogle Scholar
  43. 43.
    Mancisidor A, Zubizarreta A, Cabanes I, Bengoa P, Jung JH (2017) Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot. In: International conference on rehabilitation robotics, pp 561–566.  https://doi.org/10.1109/ICORR.2017.8009307
  44. 44.
    Mancisidor A, Zubizarreta A, Cabanes I, Bengoa P, Jung JH (2016) Kinematic and dynamic modeling of a multifunctional rehabilitation robot UHP. In: Husty M, Hofbaur M (eds) New trends in medical and service robots, MESROB 2016. Mechanisms and Machine Science. vol 48. Springer, Cham, pp 117–130.  https://doi.org/10.1007/978-3-319-59972-4_9 CrossRefGoogle Scholar
  45. 45.
    Yu H, Chen G, Thakor N (2013) Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23:1072–1083CrossRefGoogle Scholar
  46. 46.
    Jutinico AL, Jaimes JC, Escalante FM, Perez-Ibarra JC, Terra MH, Siqueira AG (2017) Impedance control for robotic rehabilitation: a robust Markovian approach. Front Neurorobot 11:43.  https://doi.org/10.3389/fnbot.2017.00043 CrossRefGoogle Scholar
  47. 47.
    Khosravi MA, Taghirad HD (2014) Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24:87–97CrossRefGoogle Scholar
  48. 48.
    Pacilli A, Germanotta M, Rossi S, Cappa P (2014) Quantification of age-related differences in reaching and circle-drawing using a robotic rehabilitation device. Appl Bionics Biomech 11:91–104CrossRefGoogle Scholar
  49. 49.
    Black-Bain K (2015) An update in robotics in outpatient rehab. University of Utah Health Care, Salt Lake CityGoogle Scholar
  50. 50.
    Roy A, Krebs HI, Wiliams DJ, Bever CT, Forrester LW, Macko RM et al (2009) Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEE Trans Robot 25:569–582CrossRefGoogle Scholar
  51. 51.
    Alves T, D’Carvalho MC, Gonçalves RS (2018) Controle “Assist-as-needed” em estruturas robóticas atuadas por cabos para reabilitação das articulações do corpo Humano, Encontro Nacional de Engenharia Biomecânica—ENEBI 2018 (accepted paper) Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Federal University of UberlândiaUberlândiaBrazil

Personalised recommendations