Skip to main content
Log in

A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The coupling between a rigid body under large rotations and incompressible fluids is investigated within the arbitrary Lagrangian–Eulerian framework. We use here a staggered type of coupling with a predictor/corrector approach for the forces applied to the rigid body. Adaptive time stepping based on feedback control theory imposing a CFL condition on the mesh is investigated. The coupling scheme is first tested on a case illustrating vortex-induced vibrations around a rotating plate. We show the advantages of using the residual-based variational multiscale method for the fluid in the present context. Also, the time-step control and the role of the parameters introduced for the predictor/corrector approach are illustrated using the same test case. A reduced model FPSO ship is then studied, comparing its pitch decay with experimental results. A complex wave–rigid body interaction calculation is finally presented. Results demonstrated the robustness of the predictor/corrector staggered approach with adaptive time-step control for simulating complex interactions of a rigid body under large rotations and free-surface flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmed N, Rebollo TC, John V, Rubino S (2017) A review of variational multiscale methods for the simulation of turbulent incompressible flows. Arch Comput Methods Eng 24(1):115–164

    Article  MathSciNet  MATH  Google Scholar 

  2. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79(1):010905. https://doi.org/10.1115/1.4005072

    Article  Google Scholar 

  3. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378

    Article  MathSciNet  MATH  Google Scholar 

  4. Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical fsi study of compliant hydrofoils. Comput Mech 55:1079–1090

    Article  Google Scholar 

  5. Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Model Method Appl Sci 22(Suppl 2):1230002. https://doi.org/10.1142/S0218202512300025

    Article  MATH  Google Scholar 

  6. Bazilevs Y, Korobenko A, Deng X, Yan J (2016) Fluid–structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010. https://doi.org/10.1115/1.4033080

    Article  Google Scholar 

  7. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction methods and applications. Wiley, Amsterdam

    Book  MATH  Google Scholar 

  8. Bungartz HJ, Schäfer M (2006) Fluid–structure interaction: modelling, simulation, optimisation, vol 1. Springer, New York

    MATH  Google Scholar 

  9. Farhat C, Rallu A, Wang K, Belytschko T (2010) Robust and provably second-order explicit-explicit and implicit–explicit staggered time-integrators for highly non-linear compressible fluid–structure interaction problems. Int J Numer Methods Eng 84(1):73–107

    Article  MathSciNet  MATH  Google Scholar 

  10. Calderer A, Guo X, Shen L, Sotiropoulos F (2014) Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach. J Phys Conf Ser 524(1):012091

    Article  Google Scholar 

  11. Calderer A, Kang S, Sotiropoulos F (2014) Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. J Comput Phys 277:201–227

    Article  MathSciNet  MATH  Google Scholar 

  12. Calderer R, Masud A (2010) A multiscale stabilized ale formulation for incompressible flows with moving boundaries. Comput Mech 46(1):185–197

    Article  MathSciNet  MATH  Google Scholar 

  13. Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438

    Article  MATH  Google Scholar 

  14. Carrica PM, Wilson RV, Noack RW, Stern F (2007) Ship motions using single-phase level set with dynamic overset grids. Comput Fluids 36(9):1415–1433

    Article  MATH  Google Scholar 

  15. Carvalho D, Sampaio CMP, Ruggeri F, de Mello PC, Watai RA (2012) Green water events in fpso. Tech rep, USP-Petrobras

  16. Cellier FE, Kofman E (2006) Continuous system simulation. Springer, New York

    MATH  Google Scholar 

  17. Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375

    Article  MathSciNet  MATH  Google Scholar 

  18. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321

    Article  MathSciNet  MATH  Google Scholar 

  19. Codina R, Principe J, Avila M (2010) Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int J Numer Meth Heat Fluid Flow 20:492–516

    Article  MathSciNet  MATH  Google Scholar 

  20. Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196:2413–2430

    Article  MathSciNet  MATH  Google Scholar 

  21. Coutinho A, Alves J, Rochinha F, Elias R, de Almeida Côrtes A, Gonçalves-Junior M, da Silva C, Gazoni L, Ferreira B, Bernadá G, Lins E, de Carvalho e Silva D (2013) Simulador de elementos finitos para problemas complexos de superfcie livre: Extensoes e novas analises de engenharia. Tech. rep., Project PEC 14329 - Nucleo Avancado de Computacao de Alto Desempenho COPPE/UFRJ

  22. Cruchaga M, Battaglia L, Storti M, D’Elía J (2016) Numerical modeling and experimental validation of free surface flow problems. Arch Comput Methods Eng 23(1):139–169

    Article  MathSciNet  MATH  Google Scholar 

  23. Dettmer W, Perić D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:1633–1666

    Article  MathSciNet  MATH  Google Scholar 

  24. Dettmer WG, Perić D (2013) A new staggered scheme for fluid–structure interaction. Int J Numer Meth Eng 93(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  25. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Amsterdam

    Book  Google Scholar 

  26. Elgeti S, Sauerland H (2016) Deforming fluid domains within the finite element method: five mesh-based tracking methods in comparison. Arch Comput Methods Eng 23(2):323–361

    Article  MathSciNet  MATH  Google Scholar 

  27. Elias R, Coutinho A (2007) Stabilized edge-based finite element simulation of free-surface flows. Int J Numer Meth Fluids 54:965–993

    Article  MathSciNet  MATH  Google Scholar 

  28. Elias R, Coutinho A, Jr, MG, Cortês A, Alves JLD, Guevara NO, Silva JCE, Correa B, Rochinha FA, Bernadá GMG, de Carvalho e Silva DF (2013) A stabilized edge-based finite element approach to wave–structure interaction assessment. In: ASME 2013 32nd international conference on ocean, offshore and arctic engineering, vol 1, Offshore Technology, Nantes

  29. Elias R, Gonçalves M, Coutinho A, Esperança P, Martins M, Ferreira M (2009) Free-surface flow simulation using stabilized edge-based finite element methods. In: Proceeedings of ASME 2009 28th international conference on offshore mechanics and arctic engineering OMAE, ASME

  30. Elias R, Paraizo P, Coutinho A (2008) Stabilized edge-based finite element computation of gravity currents in lock-exchange configurations. Int J Numer Meth Fluids 57:1137–1152

    Article  MathSciNet  MATH  Google Scholar 

  31. Formaggia L, Miglio E, Mola A, Parolini N (2008) Fluid–structure interaction problems in free surface flows: application to boat dynamics. Int J Numer Meth Fluids 56:965–978

    Article  MathSciNet  MATH  Google Scholar 

  32. Franklin G, Powell J, Emami-Naeini A (1994) Feedback control of dynamic systems. Addison-Wesley Publishing, Boston

    MATH  Google Scholar 

  33. Géradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue européenne des éléments finis 4:497–553

    Article  MathSciNet  MATH  Google Scholar 

  34. Gravemeier V, Wall W (2011) Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low mach number. Int J Numer Meth Fluids 65:1260–1278

    Article  MathSciNet  MATH  Google Scholar 

  35. Gustafsson K, Lundh M, Soderlind G (1988) A pi stepsize control for the numerical solution for ordinary differential equations. BIT 28:270–287

    Article  MathSciNet  MATH  Google Scholar 

  36. Hesch C, Gil A, Carreño AA, Bonnet J, Betsch J (2014) A mortar approach for fluid-structure interaction problems: immersed strategies for deformable and rigid bodies. Comput Methods Appl Mech Eng 278:853–882

    Article  MathSciNet  Google Scholar 

  37. Hirt CW, Nichols BD (1981) Volume of fluid (vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  MATH  Google Scholar 

  38. Hsu MC, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840

    Article  MathSciNet  MATH  Google Scholar 

  39. Hughes T, Feijoo G, Mazzei L, Quincy JB (1998) The variational mulsticale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    Article  MATH  Google Scholar 

  40. Jacobsen NG, Fuhrman DR, Fredsœ J (2012) A wave generation toolbox for the open-source cfd library: openfoam®. Int J Numer Meth Fluids 70(9):1073–1088

  41. Journée JMJ, Massie WW (2001) Offshore hydromechanics first edition. Delft University of Technology. https://ocw.tudelft.nl/wp-content/uploads/OffshoreHydromechanics_Journee_Massie.pdf. Accessed 6 Apr 2018

  42. Kadapa C, Dettmer W, Perić D (2017) A stabilised immersed boundary method on hierarchical b-spline grids for fluid-rigid body interaction with solid-solid contact. Comput Methods Appl Mech Eng 318:242–269

    Article  MathSciNet  Google Scholar 

  43. Kanchi H, Masud A (2007) A 3d adaptive mesh moving scheme. Int J Numer Meth Fluids 54(6–8):923–944

    Article  MathSciNet  MATH  Google Scholar 

  44. Keyes DE, Mcinnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J, Constantinescu E, Estep D, Evans K, Farhat C, Hakim A, Hammond G, Hansen G, Hill J, Isaac T, Jiao X, Jordan K, Kaushik D, Kaxiras E, Koniges A, Lee K, Lott A, Lu Q, Magerlein J, Maxwell R, Mccourt M, Mehl M, Pawlowski R, Randles AP, Reynolds D, Rivière B, Rüde U, Scheibe T, Shadid J, Sheehan B, Shephard M, Siegel A, Smith B, Tang X, Wilson C, Wohlmuth B (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83

    Article  Google Scholar 

  45. Li L, Sherwin S, Bearman P (2002) A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies. Int J Numer Meth Fluids 38:187–206. https://doi.org/10.1002/d.216

    Article  MATH  Google Scholar 

  46. Lins E, Elias R, Rochinha F, Coutinho A (2010) Residual-based variational multiscale simulation of free surface flows. Comput Mech 46:545–557

    Article  MathSciNet  MATH  Google Scholar 

  47. Lins EF, Elias RN, Rochinha FA, Coutinho AL (2010) Residual-based variational multiscale simulation of free surface flows. Comput Mech 46:545–557

    Article  MathSciNet  MATH  Google Scholar 

  48. Löhner R (2008) Applied computational fluid dynamics techniques: an introduction based on finite element methods. Wiley, Amsterdam

    Book  MATH  Google Scholar 

  49. Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comput Fluids 36(1):77–91

    Article  MathSciNet  MATH  Google Scholar 

  50. Masud A, Hughes TJR (1997) A space-time galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146(1):91–126

    Article  MathSciNet  MATH  Google Scholar 

  51. Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85:67–94

    Google Scholar 

  52. Principe J, Codina R, Henke F (2010) The dissipative structure of variational multiscale methods for incompressible flows. Comput Methods Appl Mech Eng 199:791–801

    Article  MathSciNet  MATH  Google Scholar 

  53. Golshan R, Tejada-Martnez AE, Juha M, Bazilevs Y (2015) Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions. Comput Fluids 118:172–181. https://doi.org/10.1016/j.compfluid.2015.06.016

    Article  MathSciNet  Google Scholar 

  54. Löhner R, Yang C, Oñate E (2007) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int J Numer Meth Fluids 53(8):1315–1338

    Article  MathSciNet  MATH  Google Scholar 

  55. Rasthofer U, Gravemeier V (2017) Recent developments in variational multiscale methods for large-eddy simulation of turbulent flow. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-017-9209-4

    MATH  Google Scholar 

  56. Robertson I, Li L, Sherwin S, Bearman P (2003) A numerical study of rotational and transverse galloping rectangular bodies. J Fluids Struct 17:681–699

    Article  Google Scholar 

  57. Rochinha FA, Sampaio R (2000) Non-linear rigid body dynamics: energy and momentum conserving algorithm. CMES 1:7–18

    MathSciNet  Google Scholar 

  58. Ruggeri F, Watai RA, de Mello PC, Sampaio CMP, Simos AN, de Carvalho e Silva DF (2015) Fundamental green water study for head, beam and quartering seas for a simplified FPSO geosim using a mixed experimental and numerical approach. Mar Syst Ocean Technol 10(2):71–90

    Article  Google Scholar 

  59. Säfström N (2009) Modeling and simulation of rigid body and rod dynamics via geometric methods. Ph.D. thesis, NTNU

  60. de Sampaio PAB, Hallak PH, Coutinho ALGA, Pfeil MS (2004) A stabilized finite element procedure for turbulent fluidstructure interaction using adaptive timespace refinement. Int J Numer Meth Fluids 44(6):673–693

    Article  MATH  Google Scholar 

  61. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  62. Simo J, Vu-Quoc L (1986) A three-dimensional finite-stain rod model, part 2: computational aspects. Comput Methods Appl Mech Eng 58:79–116

    Article  MATH  Google Scholar 

  63. Simo J, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161

    Article  MathSciNet  MATH  Google Scholar 

  64. Simo J, Wong KK (1991) Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int J Numer Methods Eng 31:19–52

    Article  MathSciNet  MATH  Google Scholar 

  65. Souli M, Benson DJ (2013) Arbitrary Lagrangian-Eulerian and fluid-structure interaction: numerical simulation. Wiley, Amsterdam

    Book  Google Scholar 

  66. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (edict) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155(3):235–248

    Article  MATH  Google Scholar 

  67. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng 21(4):481–508. https://doi.org/10.1007/s11831-014-9113-0

    Article  MathSciNet  MATH  Google Scholar 

  68. Tanaka S, Kashiyama K (2006) Ale finite element method for fsi problems with free surface using mesh re-generation method based on background mesh. Int J Comput Fluid Dyn 20(3–4):229–236

    Article  MATH  Google Scholar 

  69. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206

    Article  MathSciNet  MATH  Google Scholar 

  70. Tezduyar TE, Mital S, Ray SE, Shi R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242

    Article  MATH  Google Scholar 

  71. Tezduyar TE, Takizawa K, Bazilevs Y (2017) Fluid–structure interaction and flows with moving boundaries and interfaces. Encycl Comput Mech Second Ed Part 2 Fluids. https://doi.org/10.1002/9781119176817.ecm2069

    Google Scholar 

  72. Valli A, Carey G, Coutinho A (2002) Control strategies for timestep selection in simulation of coupled viscous flow and heat transfer. Commun Numer Methods Eng 18:131–139

    Article  MATH  Google Scholar 

  73. Valli A, Carey G, Coutinho A (2005) Control strategies for timestep selection in fe simulation of incompressible flows and coupled reaction convection diffusion processes. Int J Numer Method Fluids 47:201–231

    Article  MATH  Google Scholar 

  74. Valli A, Elias R, Carey G, Coutinho A (2009) Pid adaptive control of incremental and arclength continuation in nonlinear applications. Int J Numer Methods Fluids 61:1181–1200

    Article  MathSciNet  MATH  Google Scholar 

  75. Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput Fluids 36(1):169–183

    Article  MATH  Google Scholar 

  76. Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174

    Article  MathSciNet  Google Scholar 

  77. Yang J, Stern F (2012) A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions. J Comput Phys 231:5029–5061

    Article  MathSciNet  MATH  Google Scholar 

  78. Yang L (2018) One-fluid formulation for fluid structure interaction with free surface. Comput Methods Appl Mech Eng 332:102–135

    Article  MathSciNet  Google Scholar 

  79. Yang L, Badia S, Codina R (2016) A pseudo-compressible variational multiscale solver for turbulent incompressible flows. Comput Mech 58:1051–1069

    Article  MathSciNet  MATH  Google Scholar 

  80. Yang L, Gil A, Carreno A, Bonet J (2018) Unified one-fluid formulation for incompressible flexible solids and multiphase flows: application to hydrodynamics using the immersed structural potential method (ispm). Int J Numer Meth Fluids 86:78–106

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by CAPES, CNPq and FAPERJ. EdgeCFD has been developed in the High Performance Computing Center of COPPE/Federal University of Rio de Janeiro for Petrobras S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando A. Rochinha.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miras, T., Camata, J.J., Elias, R.N. et al. A staggered procedure for fluid–object interaction with free surfaces, large rotations and driven by adaptive time stepping. J Braz. Soc. Mech. Sci. Eng. 40, 239 (2018). https://doi.org/10.1007/s40430-018-1147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1147-z

Keywords

Navigation