Skip to main content
Log in

Vibration suppression in full car active suspension system using fractional order sliding mode controller

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Vehicle active suspension systems (VASS) are designed to improve ride comfort and road handling capacity in the automotive industry. This paper investigates the problem of vibration suppression in full car model (FCM) with active suspension system (ASS) whose aim is to reduce the effect of the vibrations generated by road irregularities on the human body. The mathematical model is developed for seven degrees of freedom (DOF) FCM. The main objective is to control vibration of FCM for various road disturbances such as bump and random road disturbance using a fractional order sliding mode controller (FOSMC) and sliding mode controller (SMC). The effectiveness of the controllers are validated using MATLAB/Simulink software in terms of root mean square (RMS) values of body acceleration (BA), pitch acceleration (PA) and roll acceleration (RA). Further the power spectrum density (PSD) of BA is considered to show the human sensitivity range. The simulation results are indicated that FOSMC shows superior performance at adapting bump and random road disturbances compared to SMC and passive suspension system (PSS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Young KD, Utkin VI, and Ozguner U (1996) A control engineer’s guide to sliding mode control. In: Variable structure systems, 1996. VSS’96. Proceedings, 1996 IEEE International Workshop on, p 1–14, IEEE

  2. Chen B-C, Shiu Y-H, Hsieh F-C (2011) Sliding-mode control for semi-active suspension with actuator dynamics. Vehicle Syst Dyn 49(1–2):277–290

    Article  Google Scholar 

  3. Chen H-Y, Huang S-J (2008) A new model-free adaptive sliding controller for active suspension system. Int J Syst Sci 39(1):57–69

    Article  MathSciNet  MATH  Google Scholar 

  4. Lian R-J (2013) Enhanced adaptive self-organizing fuzzy sliding-mode controller for active suspension systems. IEEE Trans Ind Electron 60(3):958–968

    Article  Google Scholar 

  5. Yagiz N, Hacioglu Y, Taskin Y (2008) Fuzzy sliding-mode control of active suspensions. IEEE Trans Ind Electron 55(11):3883–3890

    Article  Google Scholar 

  6. Li H, Yu J, Hilton C, Liu H (2013) Adaptive sliding-mode control for nonlinear active suspension vehicle systems using t-s fuzzy approach. IEEE Trans Ind Electron 60(8):3328–3338

    Article  Google Scholar 

  7. Chamseddine A, Noura H (2008) Control and sensor fault tolerance of vehicle active suspension. IEEE Trans Control Syst Technol 16(3):416–433

    Article  Google Scholar 

  8. Moradi M, Fekih A (2014) Adaptive pid-sliding-mode fault-tolerant control approach for vehicle suspension systems subject to actuator faults. IEEE Trans Vehicular Technol 63(3):1041–1054

    Article  Google Scholar 

  9. Moradi M, Fekih A (2015) A stability guaranteed robust fault tolerant control design for vehicle suspension systems subject to actuator faults and disturbances. IEEE Trans Control Syst Technol 23(3):1164–1171

    Article  Google Scholar 

  10. Imine H, Fridman L, Madani T (2015) Identification of vehicle parameters and estimation of vertical forces. Int J Syst Sci 46(16):2996–3009

    Article  MATH  Google Scholar 

  11. Delavari H, Ghaderi R, Ranjbar A, Momani S (2010) Fuzzy fractional order sliding mode controller for nonlinear systems. Commun Nonlinear Sci Numer Simul 15(4):963–978

    Article  MathSciNet  MATH  Google Scholar 

  12. Ullah N, Shaoping W, Khattak MI, Shafi M (2015) Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and nonlinearities. Aerosp Sci Technol 43:381–387

    Article  Google Scholar 

  13. Luo J, Liu H (2014) Adaptive fractional fuzzy sliding mode control for multivariable nonlinear systems. Discrete Dyn Nat Soc 2014

  14. Cheng C-P, Chao C-H, Li T-HS (2010) Design of observer-based fuzzy sliding-mode control for an active suspension system with full-car model. In: Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on. p 1939–1944, IEEE

  15. Rajendiran S, Lakshmi P, Rajkumar B (2016) Enhancing travel comfort of quarter car with driver model using fractional order terminal sliding mode controller with dual actuator. J electr Eng 16(4):203–214

    Google Scholar 

  16. Sneha K, Ponnusamy L, Kalaivani R (2015) Flc-based adaptive neuro-fuzzy inference system for enhancing the traveling comfort. In: Artificial intelligence and evolutionary algorithms in engineering systems. Springer, 61–70

  17. Rajkumar B, Lakshmi P, Rajendiran S (2015) Vibration control of quarter car integrated seat suspension with driver model for different road profiles using fuzzy based sliding mode controller. In: Advanced computing (ICoAC), 2015 Seventh International Conference on. IEEE, p 1–6

  18. Rajeswari K, Lakshmi P (2011) Vibration control of mechanical suspension system using labview. Int J Instrum Technol 1(1):60–71

    Article  Google Scholar 

  19. Gáspár P, Szaszi I, Bokor J (2003) Design of robust controllers for active vehicle suspension using the mixed \(\mu\) synthesis. Veh Syst Dyn 40(4):193–228

    Article  Google Scholar 

  20. Darus R, Sam YM (2009) Modeling and control active suspension system for a full car model. In: Signal processing & Its applications, 2009. CSPA 2009. 5th International Colloquium on, IEEE, p 13–18

  21. Chul K, Paul R (2002) An accurate full car ride model using model reducing techniques. J Mech Des 124(4):697–705

    Article  Google Scholar 

  22. Fang Z, Shu W, Du D, Xiang B, He Q, He K (2011) Semi-active suspension of a full-vehicle model based on double-loop control. Procedia Eng 16:428–437

    Article  Google Scholar 

  23. Tavakoli-Kakhki M, Haeri M, Tavazoei MS (2010) Simple fractional order model structures and their applications in control system design. Eur J Control 16(6):680–694

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuznetsov A, Mammadov M, Sultan I, Hajilarov E (2011) Optimization of improved suspension system with inerter device of the quarter-car model in vibration analysis. Arch Appl Mech 81(10):1427–1437

    Article  Google Scholar 

  25. Slotine J-JE, Li W (1991) Applied nonlinear control, 199th edn. Prentice Hall, Englewood

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yuvapriya.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvapriya, T., Lakshmi, P. & Rajendiran, S. Vibration suppression in full car active suspension system using fractional order sliding mode controller. J Braz. Soc. Mech. Sci. Eng. 40, 217 (2018). https://doi.org/10.1007/s40430-018-1138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1138-0

Keywords

Navigation