Skip to main content

Advertisement

Log in

Machining performance optimization during plasma arc cutting of AISI D2 steel: application of FIS, nonlinear regression and JAYA optimization algorithm

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The work focuses on assessing the optimal machining conditions which could simultaneously satisfy multiple process performance indices during machining of AISI D2 steel. The main characteristic indices that have been considered here for evaluating plasma arc machining are surface roughness and material removal rate; the corresponding machining parameters are cutting speed, gas pressure and torch height. The study proposes an integrated optimization module combining fuzzy inference system, nonlinear regression and JAYA algorithm towards optimizing correlated multi-response features during machining of AISI D2 steel. Optimum value of machining parameters found as cutting speed of 4000 m/min, gas pressure of 95 psi and torch height of 0.5 mm using aforementioned methodology. Application potential of the aforesaid integrated optimization route has been compared to that of teaching–learning based optimization (TLBO) algorithm and genetic algorithm. It has been concluded that JAYA algorithm possesses less convergence time and hence execution is faster as compared to TLBO and genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abhishek K, Datta S, Mahapatra SS (2016) Multi-objective optimization in drilling of CFRP (polyester) composites: application of a fuzzy embedded harmony search (HS) algorithm. Measurement 77:222–239

    Article  Google Scholar 

  2. Abhishek K, Kumar VR, Datta S, Mahapatra SS (2015) Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm). J Intell Manuf 28:1–17

    Google Scholar 

  3. Adalarasan R, Santhanakumar M, Rajmohan M (2015) Application of Grey Taguchi-based response surface methodology (GT-RSM) for optimizing the plasma arc cutting parameters of 304L stainless steel. Int J Adv Manuf Technol 78:1161–1170

    Article  Google Scholar 

  4. Ali S, Prasad DK, Shankar S, Saw K (2016) Experimental investigation of temperature distribution and surface roughness for cutting aluminium-19000 and stainless steel 304 using plasma arc cutting. Int J Adv Technol Eng Sci 4:153–158

  5. Bhuvenesh R, Saifuldin M, Norizaman MH (2012) Surface roughness and MRR effect on manual plasma arc cutting machining. World Acad Sci Eng Technol 6:465–468

  6. Bini R, Colosimo BM, Kutlu AE, Monno M (2008) Experimental study of the features of the kerf generated by a 200A high tolerance plasma arc cutting system. J Mater Process Technol 196(1):345–355

    Article  Google Scholar 

  7. Chamarthi S, Sinivasa Reddy N, Elipey MK, Ramana Reddy DV (2013) Investigation analysis of plasma arc cutting parameters on the unevenness surface of hardox-400 material. Procedia Eng 64:854–861

    Article  Google Scholar 

  8. Cox E (1992) Fuzzy fundamentals. IEEE Spectr 29(10):58–61

    Article  Google Scholar 

  9. Gariboldi E, Previtali B (2005) High tolerance plasma arc cutting of commercially pure titanium. J Mater Process Technol 160(1):77–89

    Article  Google Scholar 

  10. Harničárová M, Valíček J, Čep R, Tozan H, Müllerová J, Grznárik R (2013) Comparison of non-traditional technologies for material cutting from the point of view of surface roughness. Int J Adv Manuf Technol 69(1–4):81–91

    Article  Google Scholar 

  11. Ilii SM, Coteata M, Munteanu A (2010) Experimental results concerning the variation of surface roughness parameter (Ra) at plasma arc cutting of a stainless steel workpiece. Int J Mod Manuf Technol II(1):31–36

    Google Scholar 

  12. Iosub A, Nagit G, Negoescu F (2008) Plasma cutting of composite materials. Int J Mater Form 1(1):1347–1350

    Article  Google Scholar 

  13. Klimpel A, Cholewa W, Bannister A, Luksa K, Przystałka P, Rogala T, Skupnik D, Cicero S, Martín-Meizoso A (2017) Experimental investigations of the influence of laser beam and plasma arc cutting parameters on edge quality of high-strength low-alloy (HSLA) strips and plates. Int J Adv Manuf Technol 92:1–15

    Article  Google Scholar 

  14. Mamdani EH (1976) Advances in the linguistic synthesis of fuzzy controllers. Int J Man Mach Stud 8(6):669–678

    Article  MATH  Google Scholar 

  15. Pawar PJ, Rao RV (2013) Parameter optimization of machining processes using teaching–learning based optimization algorithm. Int J Adv Manufact Technol 67(5):995–1006

    Article  Google Scholar 

  16. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    MathSciNet  Google Scholar 

  17. Rao RV, Kalyankar VD (2013) Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm. Sci Iran 20(3):967–974

    Google Scholar 

  18. Rao RV, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng Appl Artif Intell 26(1):524–531

    Article  Google Scholar 

  19. Rao RV, More KC, Taler J, Ocłoń P (2016) Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Appl Therm Eng 103:572–582

    Article  Google Scholar 

  20. Schnick M, Fussel M, Zscetzsche J (2006) Simulation of plasma and shielding gas flows in welding and cutting arcs with ansys CFX. Int Sci Colloq Model Mater Process 1:143–148

  21. Singh V (2012) Analysis of process parameters of plasma arc cutting using design of experiment. Doctoral dissertation

  22. Tsiolikas A, Kechagias J, Salonitis K, Mastorakis N (2016) Optimization of cut surface quality during CNC Plasma Arc Cutting process. Int J Syst Appl Eng Dev 10:305–308

    Google Scholar 

  23. Verma RK, Abhishek K, Datta S, Mahapatra SS (2011) Fuzzy rule based optimization in machining of FRP composites. Turk J Fuzzy Syst 2(2):99–121

    Google Scholar 

  24. Xu WJ, Fang JC, Lu YS (2002) Study on ceramic cutting by plasma arc. J Mater Process Technol 129(1):152–156

    Article  Google Scholar 

  25. Yamaguchi Y, Katada Y, Itou T, Uesugi Y, Tanaka Y, Ishijima T (2015) Experimental investigation of magnetic arc blow in plasma arc cutting. Weld World 59(1):45–51

    Article  Google Scholar 

  26. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  27. Zhou B, Liu YJ, Tan SK (2013) Efficient simulation of oxygen cutting using a composite heat source model. Int J Heat Mass Transf 57(1):304–311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Abhishek.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Nakum, B., Abhishek, K. et al. Machining performance optimization during plasma arc cutting of AISI D2 steel: application of FIS, nonlinear regression and JAYA optimization algorithm. J Braz. Soc. Mech. Sci. Eng. 40, 240 (2018). https://doi.org/10.1007/s40430-018-1087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1087-7

Keywords

Navigation