Skip to main content
Log in

Retrofitting of the IRB6-S2 robotic manipulator using Computer Numerical Control- based controllers

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work presents a comparative and descriptive study of numerical control machines solutions using Linux and Windows operating systems, used for the retrofitting of two similar models of old industrial robots, using controllers based on Computer Numerical Control (CNC). Federal University of Minas Gerais (UFMG) and University of Brasilia (UnB) adopted two different softwares, including the robot kinematics model and the generation of joint signal control. Furthermore, this article proposes a comparative study of the two open architecture controllers’ implementation advantages and CAD/CAM integration option, by describing and analyzing each academic solution and choosing the best alternative controller to implement the retrofitting technique for old industrial robots. The comparative study validated the developed generic robot retrofitting methodology, which can be considered as the work’s greatest contribution, as well as providing the open-source project, hardware and software, for ASEA IRB6-S2 Robot retrofitting. The proposed methodology is composed by a set of methods and activities described through an IDEF0 (Icam DEFinition for Function Modeling) model, which can be applied to the retrofitting of any industrial robot with serial or parallel kinematics, which guides the developer in five steps associated with the hardware and software specification for a desired robotic platform implementation as a custom solution based on LinuxCNC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. STEP-NC is a machine tool control language that extends the ISO 10303 STEP standards with the machining model in ISO 14649, adding geometric dimension and tolerance data for inspection, and the STEP PDM model for integration into the wider enterprise. The combined result has been standardized as ISO 10303-238 (AP238).

References

  1. Abreu P (2002) Robtica industrial: Robotica industrial: Especificacao de robos e celulas robotizadas, vol 1. Universidade do Porto, pp 1–29

  2. Asato O, Kato E, Inamasu R, Porto A (2002) Analysis of open cnc architecture for machine tools. J Braz Soc Mech Sci 24(3):208–212

    Article  Google Scholar 

  3. Barrientos A (2007) Fundamentos de Robotica, segunda edn. McGraw-Hill, Madrid

  4. Becerra VM, Cage CN, Harwin WS, Sharkey PM (2004) Hardware retrofit and computed torque control of a puma 560 robot updating an industrial manipulator. IEEE Control Syst 24(5):78–82

    Article  Google Scholar 

  5. Bishop BE, Spong MW (1999) Adaptive calibration and control of 2d monocular visual servo systems. Control Eng Pract 7(3):423–430

    Article  Google Scholar 

  6. Bomfim M, Fagner Coelho A, Lima E, Gontijo R (2014) A low cost methodology applied to remanufacturing of robotic manipulators. Congres Bras Autom 20:1506–1513

    Google Scholar 

  7. Bomfim M, Gontijo R, Bracarense AQ, Lima E (2012) Overhauling of a asea robot ir6 with open architecture. In: Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference on, pp 482–489 IEEE

  8. Bomfim MHS (2013) Remanufatura de manipuladores robticos com arquitetura aberta. Master’s thesis

  9. Bostick W (2013) Energy storage, compression, and switching. Springer, London

    Google Scholar 

  10. Cheruiyot GK, Zhu X, Cao Q (2016) Orocos-based generic control system for a 6 dof industrial manipulator. In: Advanced Robotics and its Social Impacts (ARSO), 2016 IEEE Workshop on, pp. 174–179. IEEE

  11. Duysinx P, Geradin M (2004) An introduction to robotics: mechanical aspects, vol 1, Universite de Liege

  12. Ferenc G, Dimić Z, Lutovac M, Vidaković J, Kvrgić V (2013) Open architecture platforms for the control of robotic systems and a proposed reference architecture model. Trans FAMENA 37(1):89–100

    Google Scholar 

  13. Fujita S, Yoshida T (1996) Ose: open system environment for controller. In: 7th International Machine Tool Engineers Conference, pp 234–243

  14. Fuwen H (2013) Loading and unloading manipulator controlled by built-in plc in cnc system. Sens Transducers 159(11):212

    Google Scholar 

  15. Glavonjic M, Milutinovic D, Zivanovic D, Dimic Z, Kvrgic V (2010) Desktop 3-axis parallel kinematic milling machine. Int J Adv Manuf Technol XLVI:51–60

    Article  Google Scholar 

  16. Han ZY, Wang YZ, Fu HY (2007) Development of a pc-based open architecture software-cnc system. Chin J Aeronaut 20(3):272–281

    Article  Google Scholar 

  17. Hascoet JY, Rauch M (2016) Enabling advanced cnc programming with opennc controllers for hsm machines tools. High Speed Mach 2(1):1–14

    Google Scholar 

  18. Horn C, Krüger J (2016) Feasibility of connecting machinery and robots to industrial control services in the cloud. In: Emerging Technologies and Factory Automation (ETFA), 2016 IEEE 21st International Conference on, pp 1–4

  19. Horn C, Krüger J (2016) A retrofitting concept for integration of machinery with legacy interfaces into cloud manufacturing architectures. In: Control, Automation and Systems (ICCAS), 2016 16th International Conference on, pp 350–352

  20. Hunt DV (1983) Industrial robotics handbook, 1st edn. Industrial Press Inc, New York,

    Google Scholar 

  21. IEEE (1995) IEEE Guide to the POSIX Open System Environment (OSE): sponsor portable applications standards committee of the IEEE Computer Society approved May 2, 1995, IEEE Standards Board. IEEE

  22. Jokić DŽ, Lubura SD (2016) Comparative analysis of the controllers for puma 560 robot. IFAC-PapersOnLine 49(25):98–103

    Article  MathSciNet  Google Scholar 

  23. Koren Y, Hu S, Gu P, Shpitalni M (2013) Open-architecture products. CIRP Ann Manuf Technol 62(2):719–729

    Article  Google Scholar 

  24. Lima E II et al (2004) Sensoring for retrofitting of an industrial robot. Inf Control Problems Manuf 1:545–550

    Google Scholar 

  25. LinuxCNC.org controls CNC machines (2015) LinuxCNC: Getting Started V2.5

  26. LinuxCNC.org controls CNC machines (2015) LinuxCNC: HAL Manual V2.5

  27. Lutz P, Sperling W, Fichtner D, Mackay R (1997) Osaca— the vendor neutral control architecture. In: Proc. European Conf. Integration in Manufacturing, pp 247–256

  28. Nicolaides A (2007) Pure mathematics: Trigonometry. No. v. 2 in Success in Pure Mathematics. P.A.S.S

  29. Oliveira LCPL (2013) Maquinagem de superfcies complexas com recurso a sistema robotico. Master’s thesis, Universidade do Porto, Portugal

  30. Ortega JG, Garcia JG, Nieto LM, Garcia AS (2010) Description of an open software robotic platform for sensor fusion applications. In: Ehsan Shafiei S (ed) Advanced strategies for robot manipulators. Sciyo, p 428

  31. Pashkevich AP, Dolgui AB, Semkin KI (2003) Kinematic aspects of a robot-positioner system in an arc welding application. Control Eng Pract 11(6):633–647

    Article  Google Scholar 

  32. Preez R (2014) 3d 6-dof serial armn robot—kinematics and implementation in linuxcnc. ASM

  33. Ribeiro A, Almeida AGS, de Souza M.B, II EJL (2007) Metodologia para implementao de retroffiting de controladores de equipamentos industriais 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA, Cusco, pp 1–10

  34. de Silva CW (1997) Intelligent control of robotic systems with application in industrial processes. Robot Auton Syst 21(3):221–237

    Article  Google Scholar 

  35. de Silva CW, Wu Q, Zhou Y (2003) Intelligent control experiments using a retrofitted industrial robot. ASME DYN SYST CONTROL DIV PUBL DSC, ASME, NEW YORK, NY,(USA) 48: 21–29

    Google Scholar 

  36. Szkodny T (1995) Forward and inverse kinematics of irb-6 manipulator. Mech Mach Theory 30(7):1039–1056

    Article  MATH  Google Scholar 

  37. Toquica J (2016) Retrofitting do robô asea irb6-s2 baseado em tecnologias de comando numérico usando linuxcnc. Master’s thesis, Universidade de Brasilia

  38. Toquica JS, Alvares JA (2016) Implementacin de la tcnica retrofitting para el robot asea irb6-s2 usando linuxcnc. In: Congresso Nacional de Engenharia Mecnica-CONEM2016, p. 10

  39. Yu D, Hu Y, Xu XW, Huang Y, Du S (2009) An open cnc system based on component technology. IEEE Trans Autom Sci Eng 6(2):302–310

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq and FAP-DF for the promotion of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Lima II.

Additional information

Technical Editor: Victor Juliano De Negri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvares, A.J., Toquica, J.S., Lima, E.J. et al. Retrofitting of the IRB6-S2 robotic manipulator using Computer Numerical Control- based controllers. J Braz. Soc. Mech. Sci. Eng. 40, 149 (2018). https://doi.org/10.1007/s40430-018-1073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1073-0

Keywords

Navigation