Skip to main content

Advertisement

Log in

Genetic Influences on Alcohol Sensitivity: a Critical Review

  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The present review provides a summary of the progress that genome-wide association studies (GWAS) have made in identifying the genetic variants that underlie the heritability of alcohol use disorder (AUD) and then provides a similar summary of alcohol sensitivity studies, an important endophenotype that can help to expand our understanding of the genetic architecture of AUD.

Recent Findings

GWAS of AUD have recently achieved the necessary sample sizes required to identify genome-wide significant risk loci and demonstrated that the disorder is genetically complex with many loci of small effect contributing to its etiology. Consequently, we describe how these studies have begun to explore AUD’s genetic correlations with other alcohol-related traits and with other psychiatric disorders to better understand the genetic etiology of AUD and its underlying mechanisms.

GWAS investigating alcohol sensitivity using the Self-Rating of the Effects of Alcohol (SRE) as an AUD endophenotype have struggled to make similar progress. We describe the advances that these studies have made in terms of further demonstrating the heritability of alcohol sensitivity along with limitations in terms of identifying genome-wide significant loci and what we see as the primary challenges facing such studies. We conclude with suggestions for future research and what could be achieved with larger samples.

Summary

Progress in the molecular genetic study of AUD and related phenotypes is being made. Nonetheless, significant efforts are needed to conduct GWAS of more specific AUD risk factors, such as alcohol sensitivity, to more fully understand how individual genetic loci contribute to AUD risk. In doing so, we will be better positioned to understand the etiologic relations between these AUD risk factors and how their confluence ultimately increases risk for AUD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Institute on Alcohol Abuse and Alcoholism (NIAAA). Understanding alcohol use disorder. https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-facts-and-statistics. 2022.

  2. Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol Med. 2015;45:1061–72.

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Roige S, Palmer AA, Clarke T-K. Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol Psychiatry. 2020;87:609–18.

    Article  CAS  PubMed  Google Scholar 

  4. Deak JD, Johnson EC. Genetics of substance use disorders: a review. Psychol Med. 2021;51:2189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Colhoun HM, McKeigue PM, Smith GD. Problems of reporting genetic associations with complex outcomes. The Lancet. 2003;361:865–72.

    Article  Google Scholar 

  6. • Deak JD, Levey DF, Wendt FR, Zhou H, Galimberti M, Kranzler HR, et al. Genome-wide investigation of maximum habitual alcohol intake in US veterans in relation to alcohol consumption traits and alcohol use disorder. JAMA Netw Open. 2022;5:e2238880. This study investigated the genetic architecture of a maximum habitual daily alcohol consumption phenotype in large European and African ancestry samples. Along with finding novel loci, relationships between habitual alcohol intake and other alcohol and psychiatric traits were reported.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019;10:1499. This study examined genetic overlap between an alcohol consumption phenotype and AUD diagnosis in a multi-ancestral veteran sample. Key findings highlighted genetic differences between alcohol consumption and presence of AUD, suggesting that heavy consumption is not a sufficient indicator of AUD.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Gelernter J, Sun N, Polimanti R, Pietrzak RH, Levey DF, Lu Q, et al. Genome-wide association study of maximum habitual alcohol intake in >140,000 U.S. European and African American veterans yields novel risk loci. Biol Psychiatry. 2019;86:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Zhou H, Sealock JM, Sanchez-Roige S, Clarke T-K, Levey DF, Cheng Z, et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat Neurosci. 2020;23:809–18. This study conducted the largest GWAS of problem alcohol use to date. Downstream analyses provided important insights into the biological pathways that influence risk for AUD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walters RK, Polimanti R, Johnson EC, McClintick JN, Adams MJ, Adkins AE, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21:1656–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Mallard TT, Savage JE, Johnson EC, Huang Y, Edwards AC, Hottenga JJ, et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am J Psychiatry. 2022;179:58–70. This study is the first item-level GWAS of the Alcohol Use Disorders Identification Test (AUDIT). Results suggest unique and shared genetic influences exist across items and provides additional insights into the genetic relations between alcohol consumption and AUD.

    Article  PubMed  Google Scholar 

  12. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51:237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Polimanti R, Peterson RE, Ong JS, MacGregor S, Edwards AC, Clarke TK, et al. Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium. Psychol Med. 2019;49:1218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bountress KE, Brick LA, Sheerin C, Grotzinger A, Bustamante D, Hawn SE, et al. Alcohol use and alcohol use disorder differ in their genetic relationships with PTSD: a genomic structural equation modelling approach. Drug Alcohol Depend. 2022;234:109430.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson EC, Kapoor M, Hatoum AS, Zhou H, Polimanti R, Wendt FR, et al. Investigation of convergent and divergent genetic influences underlying schizophrenia and alcohol use disorder. Psychol Med. 2023;53:1196–204.

    Article  PubMed  Google Scholar 

  16. Sanchez-Roige S, Palmer AA. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat Neurosci. 2020;23:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hines LM, Ray L, Hutchison K, Tabakoff B. Alcoholism: the dissection for endophenotypes. Dialogues Clin Neurosci. 2005;7:153–63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salvatore JE, Gottesman II, Dick DM. Endophenotypes for alcohol use disorder: an update on the field. Curr Addict Rep. 2015;2:76–90.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cuthbert BN. Translating intermediate phenotypes to psychopathology: the NIMH Research Domain Criteria. Psychophysiology. 2014;51:1205–6.

    Article  PubMed  Google Scholar 

  20. Kwako LE, Momenan R, Litten RZ, Koob GF, Goldman D. Addictions neuroclinical assessment: a neuroscience-based framework for addictive disorders. Biol Psychiatry. 2016;80:179–89.

    Article  PubMed  Google Scholar 

  21. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160:636–45.

    Article  PubMed  Google Scholar 

  22. Hellhammer D, Meinlschmidt G, Pruessner JC. Conceptual endophentoypes: a strategy to advance the impact of psychoneuroendocrinology in precision medicine. Psychoneuroendocrinology. 2018;89:147–60.

    Article  PubMed  Google Scholar 

  23. Tsuang MT, Faraone SV, Lyons MJ. Identification of the phenotype in psychiatric genetics. Eur Arch Psychiatry Clin Neurosci. 1993;243:131–42.

    Article  CAS  PubMed  Google Scholar 

  24. Morozova TV, Mackay TFC, Anholt RRH. Genetics and genomics of alcohol sensitivity. Mol Genet Genomics. 2014;289:253–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spear LP, Varlinskaya EI. Adolescence: Alcohol sensitivity, tolerance, and intake. In: Galanter M, Lowman C, Boyd GM, Faden VBWE, Lagressa D, editors. Recent developments in alcoholism. Boston, MA: Springer; 2005. pp.143–59.

  26. Crabbe JC, Bell RL, Ehlers CL. Human and laboratory rodent low response to alcohol: is better consilience possible? Addict Biol. 2010;15:125–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. •• Parker CC, Lusk R, Saba LM. Alcohol sensitivity as an endophenotype of alcohol use disorder: exploring its translational utility between rodents and humans. Brain Sci. 2020;10:725. This review article examines the utility of rodent models in exploring alcohol sensitivity as an endophenotype and provides examples from translational studies integrating rodent and human genetics studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Viken RJ, Rose RJ, Morzorati SL, Christian JC, Li TK. Subjective intoxication in response to alcohol challenge: heritability and covariation with personality, breath alcohol level, and drinking history. Alcohol Clin Exp Res. 2003;27:795–803.

    Article  PubMed  Google Scholar 

  29. Heath AC, Madden PAF, Bucholz KK, Dinwiddie SH, Slutske WS, Bierut LJ, et al. Genetic differences in alcohol sensitivity and the inheritance of alcoholism risk. Psychol Med. 1999;29:1069–81.

    Article  CAS  PubMed  Google Scholar 

  30. Schuckit MA, Smith TL, Clarke DF. Cross-sectional and prospective associations of drinking characteristics with scores from the Self-Report of the Effects of Alcohol questionnaire and findings from alcohol challenges. Alcohol Clin Exp Res. 2021;45:2282–93.

    Article  PubMed  Google Scholar 

  31. Schuckit MA, Smith TL, Pierson J, Danko GP, Beltran IA. Relationships among the level of response to alcohol and the number of alcoholic relatives in predicting alcohol-related outcomes. Alcohol Clin Exp Res. 2006;30:1308–14.

    Article  PubMed  Google Scholar 

  32. Schuckit MA, Smith TL, Kalmijn J, Danko GP. A cross-generational comparison of alcohol challenges at about age 20 in 40 father-offspring pairs. Alcohol Clin Exp Res. 2005;29:1921–7.

    Article  PubMed  Google Scholar 

  33. Schuckit MA, Smith TL, Anderson KG, Brown SA. Testing the level of response to alcohol: Social information processing model of alcoholism risk - a 20-year prospective study. Alcohol Clin Exp Res. 2004;28:1881–9.

    Article  PubMed  Google Scholar 

  34. •• Lai D, Wetherill L, Kapoor M, Johnson EC, Schwandt M, Ramchandani VA, et al. Genome-wide association studies of the self-rating of effects of ethanol (SRE). Addict Biol. 2020;25:e12800. Using the COGA sample, this article describes a GWAS of SRE-5 and SRE-T. Modest heritability estimates were reported for both subscales (h22: 21% - 31 %), and the first genome-wide significant loci for SRE identified.

    Article  PubMed  Google Scholar 

  35. Morean ME, Corbin WR. Subjective response to alcohol: a critical review of the literature. Alcohol Clin Exp Res. 2010;34:385–95.

    Article  PubMed  Google Scholar 

  36. Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci. 1984;81:258–61.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Crabb DW, Edenberg HJ, Bosron WF, Li TK. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. Journal of Clinical Investigation. 1989;83:314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gizer IR, Edenberg HJ, Gilder DA, Wilhelmsen KC, Ehlers CL. Association of alcohol dehydrogenase genes with alcohol-related phenotypes in a Native American community sample. Alcohol Clin Exp Res. 2011;35:2008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hendershot CS, Witkiewitz K, George WH, Wall TL, Otto JM, Liang T, et al. Evaluating a cognitive model of ALDH2 and drinking behavior. Alcohol Clin Exp Res. 2011;35:91–8.

    Article  PubMed  Google Scholar 

  40. Higuchi S, Parrish KM, Dufour MC, Towle LH, Harford TC. Relationship between age and drinking patterns and drinking problems among Japanese, Japanese-Americans, and Caucasians. Alcohol Clin Exp Res. 1994;18:305–10.

    Article  CAS  PubMed  Google Scholar 

  41. Luczak SE, Cook TAR, Wall TL, Shea SH, Carr LG. ALDH2 status and conduct disorder mediate the relationship between ethnicity and alcohol dependence in Chinese, Korean, and White American college students. J Abnorm Psychol. 2004;113:271–8.

    Article  PubMed  Google Scholar 

  42. Thomasson HR, Edenberg HJ, Crabb DW, Mai XL, Jerome RE, Li TK, et al. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet. 1991;48:677–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schuckit MA. Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry. 1994;151:184–9.

    Article  CAS  PubMed  Google Scholar 

  44. Schuckit MA. Subjective responses to alcohol in sons of alcoholics and control subjects. Arch Gen Psychiatry. 1984;41:879–84.

    Article  CAS  PubMed  Google Scholar 

  45. Schuckit MA. Ethanol-induced changes in body sway in men at high alcoholism risk. Arch Gen Psychiatry. 1985;42:375–9.

    Article  CAS  PubMed  Google Scholar 

  46. Schuckit MA, Tsuang JW, Anthenelli RM, Tipp JE, Nurnberger JI. Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol. 1996;57:368–77.

    Article  CAS  PubMed  Google Scholar 

  47. Schuckit MA, Smith TL, Tipp JE. The Self-Rating of the Effects of Alcohol (SRE) form as a retrospective measure of the risk for alcoholism. Addiction. 1997;92:979–88.

    CAS  PubMed  Google Scholar 

  48. Schuckit MA, Smith TL, Rana BK, Mendoza LA, Clarke D, Kawamura M. Performance of the Self-Report of the Effects of Alcohol questionnaire across sexes and generations. Alcohol Clin Exp Res. 2019;43:1384–90.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schuckit MA. A critical review of methods and results in the search for genetic contributors to alcohol sensitivity. Alcohol Clin Exp Res. 2018;42:822–35.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ehlers CL, Gizer IR, Schuckit MA, Wilhelmsen KC. Genome-wide scan for self-rating of the effects of alcohol in American Indians. Psychiatr Genet. 2010;20:221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Joslyn G, Ravindranathan A, Brush G, Schuckit M, White RL. Human variation in alcohol response is influenced by variation in neuronal signaling genes. Alcohol Clin Exp Res. 2010;34:800–12.

    Article  CAS  PubMed  Google Scholar 

  52. •• Edwards AC, Deak JD, Gizer IR, Lai D, Chatzinakos C, Wilhelmsen KP, et al. Meta-analysis of genetic influences on initial alcohol sensitivity. Alcohol Clin Exp Res. 2018;42:2349–59. This meta-analysis of GWAS on initial alcohol sensitivity in the SRE-5 across diverse samples did not identify any specific loci that reached genome-wide significance; however, it reports a modest genetic influence on initial alcohol sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ’Children of the 90s’-the index offspring of the avon longitudinal study of parents and children. Int J Epidemiol. 2013;42:111–27.

    Article  PubMed  Google Scholar 

  54. Fraser A, Macdonald-wallis C, Tilling K, Boyd A, Golding J, Davey smith G, et al. Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.

    Article  PubMed  Google Scholar 

  55. Dick DM, Nasim A, Edwards AC, Salvatore JE, Cho SB, Adkins A, et al. Spit for Science: launching a longitudinal study of genetic and environmental influences on substance use and emotional health at a large US university. Front Genet. 2014;5:47.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wray NR, Lin T, Austin J, McGrath JJ, Hickie IB, Murray GK, et al. From basic science to clinical application of polygenic risk scores. JAMA Psychiat. 2021;78:101–9.

    Article  Google Scholar 

  57. Yeung EW, Spychala KM, Miller AP, Otto JM, Deak JD, Kim H, et al. Effects of genetic risk for alcohol dependence and onset of regular drinking on the progression to alcohol dependence: a polygenic risk score approach. Drug Alcohol Depend. 2022;230:109117.

    Article  CAS  PubMed  Google Scholar 

  58. •• Lai D, Kapoor M, Wetherill L, Schwandt M, Ramchandani VA, Goldman D, et al. Genome-wide admixture mapping of DSM-IV alcohol dependence, criterion count, and the self-rating of the effects of ethanol in African American populations. Am J Med Genet B Neuropsychiatr Genet. 2021;186:151–61. Employing an admixture mapping approach, this study identified genetic loci relevant to SRE and AUD in a combined sample of participants of African ancestry. This study describes an important contribution to increasing the diversity of research participants and reducing health disparities among under-represented populations in the AUD and molecular genetics literatures.

    Article  CAS  PubMed  Google Scholar 

  59. Bentley AR, Callier S, Rotimi CN. Diversity and inclusion in genomic research: why the uneven progress? J Community Genet. 2017;8:255–66.

    Article  PubMed  PubMed Central  Google Scholar 

  60. • Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91. This important article outlines the Eurocentric bias existing in many GWAS, describes difficulties that arise when attempting to generalize PGS to understudied populations, and offers suggestions to guide researchers toward addressing existing health disparities in non-European populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • Peterson RE, Kuchenbaecker K, Walters RK, Chen CY, Popejoy AB, Periyasamy S, et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell. 2019;179:589–603. This accessible article discusses the problematic focus of GWAS on European populations and emphasizes the need for multi-ancestry studies and inclusion of individuals from ad-mixed populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Newlin DB, Thomson JB. Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull. 1990;108:383–402.

    Article  CAS  PubMed  Google Scholar 

  63. King AC, Houle T, De Wit H, Holdstock L, Schuster A. Biphasic alcohol response differs in heavy versus light drinkers. Alcohol Clin Exp Res. 2002;26:827–35.

    Article  CAS  PubMed  Google Scholar 

  64. King AC, De Wit H, McNamara PJ, Cao D. Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry. 2011;68:389–99.

    Article  PubMed  PubMed Central  Google Scholar 

  65. King AC, McNamara PJ, Hasin DS, Cao D. Alcohol challenge responses predict future alcohol use disorder symptoms: a 6-year prospective study. Biol Psychiatry. 2014;75:798–806.

    Article  PubMed  Google Scholar 

  66. Fleming KA, Bartholow BD, Hilgard J, Mccarthy DM, O’Neill SE, Steinley D, et al. The alcohol sensitivity questionnaire: evidence for construct validity. Alcohol Clin Exp Res. 2016;40:880–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. • Sanchez-Roige S, Fontanillas P, Elson SL, Gray JC, de Wit H, MacKillop J, et al. Genome-wide association studies of impulsive personality traits (BIS-11 and UPPSP) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1I and CADM2 genes. J Neurosci. 2019;39:2562–72. This study performed the largest GWAS of impulsivity personality traits to-date using scores from two widely cited impulsivity assessments and estimated the genetic correlations between these impulsivity traits and a number of psychiatric disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J, et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50:920–7.

    Article  CAS  PubMed  Google Scholar 

  69. Sanchez-Roige S, Fontanillas P, Elson SL, Pandit A, Schmidt EM, Foerster JR, et al. Genome-wide association study of delay discounting in 23,217 adult research participants of European ancestry. Nat Neurosci. 2018;21:16–8.

    Article  CAS  PubMed  Google Scholar 

  70. Savage JE, Peterson RE, Aliev F, Dick DM. Genetic and environmental etiology of drinking motives in college students. Alcohol Clin Exp Res. 2022;46:1783–96.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Heermans EH. Booze and blood: the effects of acute and chronic alcohol abuse on the hematopoietic system. Clin Lab Sci. 1998;11:229–32.

    CAS  PubMed  Google Scholar 

  72. Rocco A, Compare D, Angrisani D, Zamparelli MS, Nardone G. Alcoholic disease: liver and beyond. World J Gastroenterol. 2014;20:14652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. •• Hatoum AS, Johnson EC, Colbert SMC, Polimanti R, Zhou H, Walters RK, et al. The addiction risk factor: a unitary genetic vulnerability characterizes substance use disorders and their associations with common correlates. Neuropsychopharmacology. 2022;47:1739–45. This study found a common addiction risk factor demonstrating shared genetic vulnerability to problematic alcohol use, problematic tobacco use, cannabis use disorder, and opioid use disorder.

    Article  PubMed  Google Scholar 

  74. Stephan RA, Alhassoon OM, Allen KE, Wollman SC, Hall M, Thomas WJ, et al. Meta-analyses of clinical neuropsychological tests of executive dysfunction and impulsivity in alcohol use disorder. Am J Drug Alcohol Abuse. 2017;43:24–43.

    Article  PubMed  Google Scholar 

  75. Kwako LE, Schwandt ML, Ramchandani VA, Diazgranados N, Koob GF, Volkow ND, et al. Neurofunctional domains derived from deep behavioral phenotyping in alcohol use disorder. Am J Psychiatry. 2019;176:744–53.

    Article  PubMed  PubMed Central  Google Scholar 

  76. •• Boness CL, Watts AL, Moeller KN, Sher KJ. The etiologic, theory-based, ontogenetic hierarchical framework of alcohol use disorder: a translational systematic review of reviews. Psychol Bull. 2021;147:1075–123. This article introduces the Etiologic, Theory-Based, Ontogenetic Hierarchical Framework (ETOH Framework) of mechanisms underlying alcohol use disorder. SRE is noted as a component underneath “Reward Sensitivity,” a subdomain of “Reward.”

    Article  PubMed  PubMed Central  Google Scholar 

  77. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85:5274–8.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  78. Crabbe JC, Cameron AJ, Munn E, Bunning M, Wahlsten D. Overview of mouse assays of ethanol intoxication. Curr Protoc Neurosci. 2008;9–26.

  79. Broadbent J, Muccino KJ, Cunningham CL. Ethanol-induced conditioned taste aversion in 15 inbred mouse strains. Behav Neurosci. 2002;116:138–48.

    Article  CAS  PubMed  Google Scholar 

  80. Fillmore MT, Ostling EW, Martin CA, Kelly TH. Acute effects of alcohol on inhibitory control and information processing in high and low sensation-seekers. Drug Alcohol Depend. 2009;100:91–9.

    Article  CAS  PubMed  Google Scholar 

  81. Shannon EE, Staniforth ER, McNamara J, Bernosky-Smith KA, Liguori A. Response inhibition impairments predict alcohol-induced sedation. Alcohol Alcohol. 2011;46:33–8.

    Article  CAS  PubMed  Google Scholar 

  82. Martínez-Loredo V, Hendershot CS, O’connor RM, Wardell JD. The prospective association of negative urgency with hazardous drinking via impaired control: a moderating role of alcohol sensitivity. J Stud Alcohol Drugs. 2020;81:89–94.

    Article  PubMed  Google Scholar 

  83. Leeman RF, Ralevski E, Limoncelli D, Pittman B, O’Malley SS, Petrakis IL. Relationships between impulsivity and subjective response in an IV ethanol paradigm. Psychopharmacology. 2014;231:2867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allen HC, Wesley MJ, Weafer J, Fillmore MT. Sensitivity to the disinhibiting effect of alcohol: the role of trait impulsivity and sex differences. Psychol Addict Behav. 2022;36:1048–58.

    Article  PubMed  Google Scholar 

  85. Sanchez-Roige S, Jennings MV, Thorpe HHA, Mallari JE, van der Werf LC, Bianchi SB, et al. CADM2 is implicated in impulsive personality and numerous other traits by genome- and phenome-wide association studies in humans and mice. Transl Psychiatry. 2023;13:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sanchez-Roige S, Fontanillas P, Elson SL, Pandit A, Schmidt EM, Foerster JR, et al. Genome-wide association study of delay discounting in 23,217 adult research participants of European ancestry. Nat Neurosci. 2018;21:16–8.

    Article  CAS  PubMed  Google Scholar 

  87. Ray LA, Bujarski S, Mackillop J, Courtney KE, Monti PM, Miotto K. Subjective response to alcohol among alcohol-dependent individuals: effects of the Mu-opioid receptor (OPRM1) gene and alcoholism severity. Alcohol Clin Exp Res. 2013;37:E116–24.

    Article  CAS  PubMed  Google Scholar 

  88. Otto JM, Gizer IR, Deak JD, Fleming KA, Bartholow BD. A cis-eQTL in OPRM1 is associated with subjective response to alcohol and alcohol use. Alcohol Clin Exp Res. 2017;41:929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. MacKillop J, Menges DP, McGeary JE, Lisman SA. Effects of craving and DRD4 VNTR genotype on the relative value of alcohol: an initial human laboratory study. Behav Brain Funct. 2007;3:1–12.

    Article  Google Scholar 

  90. Arias AJ, Covault J, Feinn R, Pond T, Yang BZ, Ge W, et al. A GABRA2 variant is associated with increased stimulation and “high” following alcohol administration. Alcohol Alcohol. 2014;49:1–9.

    Article  CAS  PubMed  Google Scholar 

  91. Jones JD, Comer SD, Kranzler HR. The pharmacogenetics of alcohol use disorder. Alcohol Clin Exp Res. 2015;39:391–402.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grant T32 AA013526 from the National Institute on Alcohol Abuse and Alcoholism (PI Kenneth J. Sher) to Alea B. Albright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen W. Yeung.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, E.W., Herchenroeder, L., Webster, H. et al. Genetic Influences on Alcohol Sensitivity: a Critical Review. Curr Addict Rep 11, 94–104 (2024). https://doi.org/10.1007/s40429-023-00530-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-023-00530-2

Keywords

Navigation