Skip to main content

Advertisement

Log in

Sex Differences in Adolescent Neurobiological Risk for Substance Use and Substance Use Disorders

  • Adolescent / Young Adult Addiction (M Heitzeg, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

It is well established that adolescence is a period of time during which experimentation with substances escalates, while neurobiological changes simultaneously leave adolescents increasingly vulnerable to the development of substance use disorders (SUDs). This review sought to summarize the literature on sex differences in neurobiological risk for substance use and SUDs among adolescents. Findings from previous reviews are discussed and supplemented with evidence from recent research.

Recent Findings

We synthesize literature from human and animal studies and highlight sex differences in development, structure, and function in three primary brain regions linked to SUD risk: the prefrontal cortex, ventral striatum, and amygdala. Evidence from both human and animal studies suggests sex-divergent paths in risk for substance use and addiction: an internalizing path in females and an externalizing path in males.

Summary

While much work is still needed to clarify sex-dependent neurobiological changes that contribute to differences in addiction risk, prefrontal and striatal findings have emerged in both animal and human studies. Continued efforts are needed in order to shed light on mechanisms of risk and, eventually, sex-tailored interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Johnston LD, O’Malley PM, Miech RA, Bachman JG, Schulenberg JE. Monitoring the future national survey results on drug use, 1975-2016: overview, key findings on adolescent drug use. Instit Soc Res. 2017.

  2. Center for Behavioral Health Statistics and Quality. 2016 National survey on drug use and health: detailed tables. Substance Abuse and Mental Health Services Administration; 2017.

  3. • Newton-Howes G, Boden JM. Relation between age of first drinking and mental health and alcohol and drug disorders in adulthood: evidence from a 35-year cohort study. Addiction. 2016;111(4):637–44 This large longitudinal study supports the notion that early substance use initiation influences later adult functioning. The study is one of few longitudinal cohort studies to also consider the role of covariates in the relationship between early substance use and later adult functioning.

    Article  CAS  PubMed  Google Scholar 

  4. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, et al. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage. 2007;36:1065–73.

    Article  PubMed  Google Scholar 

  5. Giedd JN, Raznahan A, Mills KL, Lenroot RK. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differ. 2012;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •• Heitzeg MM, Hardee JE, Beltz AM. Sex differences in the developmental neuroscience of adolescent substance use risk. Curr Opin Behav Sci. 2018;23:21–6 This comprehensive literature review describes distinct internalizing and externalizing paths to substance use risk. The manuscript then reviews evidence for sex differences in neural development and how these differences result in divergent risk pathways for males (externalizing) and females (internalizing). The review references the most common models of adolescent neural development/risk-taking (e.g., dual systems, triadic model) and conceptualizes them within a framework of internalizing and externalizing pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  7. •• Hammerslag LR, Gulley JM. Sex differences in behavior and neural development and their role in adolescent vulnerability to substance use. Behav Brain Res. 2016;298:15–26 This excellent and comprehensive literature review covering both human and animal literature highlights sex differences in both behavior and neural development (structural and functional evidence) and their role in risk for substance use initiation, as well as risk of developing problem substance use.

    Article  PubMed  Google Scholar 

  8. Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther. 2015;153:55–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Becker JB, Koob GF. Sex differences in animal models: focus on addiction. Pharmacol Rev. 2016;68(2):242–63 This is another excellent, comprehensive, and well-organized literature review on preclinical models of sex differences in addiction. The review organizes evidence for sex differences in each stage of the addiction cycle (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) and also organizes findings by type of substance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koob GF. Neurobiology of addiction. Focus. 2011;9(1):55–65.

    Article  Google Scholar 

  11. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38. https://doi.org/10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  12. Hammerslag LR, Gulley JM. Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol. 2014;56(4):611–21. https://doi.org/10.1002/dev.21127.

    Article  PubMed  Google Scholar 

  13. Crone EA, Dahl RE. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat Rev Neurosci. 2012;13(9):636–50.

    Article  CAS  PubMed  Google Scholar 

  14. Steinberg L. A social neuroscience perspective on adolescent risk-taking. Dev Rev. 2008;28(1):78–106.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ernst M, Fudge JL. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neurosci Biobehav Rev. 2009;33(3):367–82.

    Article  PubMed  Google Scholar 

  16. Casey BJ. Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annu Rev Psychol. 2015;66:295–319.

    Article  CAS  PubMed  Google Scholar 

  17. Harden KP, Tucker-Drob EM. Individual differences in the development of sensation seeking and impulsivity during adolescence: further evidence for a dual systems model. Dev Psychol. 2011;47(3):739–46.

    Article  PubMed  Google Scholar 

  18. Zucker RA. Anticipating problem alcohol use developmentally from childhood into middle adulthood: what have we learned? Addiction. 2008;103:100–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202.

    Article  CAS  PubMed  Google Scholar 

  20. • Silverman MH, Jedd K, Luciana M. Neural networks involved in adolescent reward processing: an activation likelihood estimation meta-analysis of functional neuroimaging studies. Neuroimage. 2015;122:427–39 This helpful meta-analysis quantitatively synthesizes results from fMRI studies examining neural correlates of reward processing among adolescents. Findings help to confirm the primary regions involved in reward processing as well as summarize contradictory findings examining differences in reward processing among adolescents and adults.

    Article  PubMed  Google Scholar 

  21. Gjedde A, Kumakura Y, Cumming P, Linnet J, Møller A. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc Natl Acad Sci. 2010;107(8):3870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steinberg L, Albert D, Cauffman E, Banich M, Graham S, Woolard J. Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: evidence for a dual systems model. Dev Psychol. 2008;44(6):1764–78.

    Article  PubMed  Google Scholar 

  23. Shulman EP, Harden KP, Chein JM, Steinberg L. Sex differences in the developmental trajectories of impulse control and sensation-seeking from early adolescence to early adulthood. J Youth Adolesc. 2015;44(1):1–7.

    Article  PubMed  Google Scholar 

  24. Peper JS, Pol HH, Crone EA, Van Honk J. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. Neuroscience. 2011;191:28–37.

    Article  CAS  PubMed  Google Scholar 

  25. Raznahan A, Shaw PW, Lerch JP, Clasen LS, Greenstein D, Berman R, et al. Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proc Natl Acad Sci. 2014;111(4):1592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raznahan A, Lee Y, Stidd R, Long R, Greenstein D, Clasen L, et al. Longitudinally mapping the influence of sex and androgen signaling on the dynamics of human cortical maturation in adolescence. Proc Natl Acad Sci. 2010;107(39):16988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Urošević S, Collins P, Muetzel R, Lim KO, Luciana M. Pubertal status associations with reward and threat sensitivities and subcortical brain volumes during adolescence. Brain Cogn. 2014;89:15–26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dennison M, Whittle S, Yücel M, Vijayakumar N, Kline A, Simmons J, et al. Mapping subcortical brain maturation during adolescence: evidence of hemisphere-and sex-specific longitudinal changes. Dev Sci. 2013;16(5):772–91.

    Article  PubMed  Google Scholar 

  29. Barkley-Levenson EE, Van Leijenhorst L, Galván A. Behavioral and neural correlates of loss aversion and risk avoidance in adolescents and adults. Developmental cognitive neuroscience. 2013;3:72–83.

    Article  PubMed  Google Scholar 

  30. Zuo X-N, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci. 2010;30:15034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Qiao L, Sun J, Wei D, Li W, Qiu J, et al. Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: a voxel-based morphometric investigation. Behav Brain Res. 2014;274:400–8.

    Article  PubMed  Google Scholar 

  32. Markham JA, Morris JR, Juraska JM. Neuron number decreases in the rat ventral, but not dorsal, medial prefrontal cortex between adolescence and adulthood. Neuroscience. 2007;144:961–8.

    Article  CAS  PubMed  Google Scholar 

  33. Koss WA, Belden CE, Hristov AD, Juraska JM. Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse. 2014;68:61–72.

    Article  CAS  PubMed  Google Scholar 

  34. Juraska JM, Sisk CL, DonCarlos LL. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav. 2013;64(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  35. Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH. Sex differences in dopamine receptor overproduction and elimination. Neuroreport. 1997;8:1495–8.

    Article  CAS  PubMed  Google Scholar 

  36. • Cservenka A, Gillespie AJ, Michael PG, Nagel BJ. Family history density of alcoholism relates to left nucleus accumbens volume in adolescent girls. J Stud Alcohol Drugs. 2015;76(1):47–56 One of few studies examining structural brain correlates of substance use risk in substance-naïve adolescents. The study also utilizes a quantitative, continuous measure of family history of substance use risk rather than a simple group comparison of adolescents with and without family history of alcohol use disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Blakemore SJ, Robbins TW. Decision-making in the adolescent brain. Nat Neurosci. 2012;15(9):1184–91.

    Article  CAS  PubMed  Google Scholar 

  38. Van Leijenhorst L, Moor BG, Op de Macks ZA, Rombouts SA, Westenberg PM, Crone EA. Adolescent risky decision-making: neurocognitive development of reward and control regions. Neuroimage. 2010;51:345–55.

    Article  PubMed  Google Scholar 

  39. Braams BR, van Duijvenvoorde AC, Peper JS, Crone EA. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J Neurosci. 2015;35(18):7226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Leijenhorst L, Westenberg PM, Crone EA. A developmental study of risky decisions on the cake gambling task: age and gender analyses of probability estimation and reward evaluation. Dev Neuropsychol. 2008;33(2):179–96.

    Article  PubMed  Google Scholar 

  41. • Dir AL, Hummer TA, Aalsma MC, Hulvershorn LA. Pubertal influences on neural activation during risky decision-making in youth with ADHD and disruptive behavior disorders. Dev Cogn Neurosci. 2019;100634. This study examines puberty-related neural correlates of decision-making, including sex effects, among youth with ADHD and DBDs who are particularly vulnerable to risk-taking. ADHD is also associated with maturation in certain brain region; thus, a better understanding of potential unique trajectories across pubertal development among youth with ADHD is important.

  42. Dreyfuss M, Caudle K, Drysdale AT, Johnston NE, Cohen AO, Somerville LH, et al. Teens impulsively react rather than retreat from threat. Dev Neurosci. 2014;36(3–4):220–7.

    Article  CAS  PubMed  Google Scholar 

  43. Brumback TY, Arbel Y, Donchin E, Goldman MS. Efficiency of responding to unexpected information varies with sex, age, and pubertal development in early adolescence. Psychophysiology. 2012;49(10):1330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blanton RE, Chaplin TM, Sinha R. Sex differences in the correlation of emotional control and amygdala volumes in adolescents. Neuroreport. 2010;21:953–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Killgore W, Oki M, Yurgelun-Todd D. Sex-specific developmental changes in amygdala responses to affective faces. Neuroreport. 2001;12:427–33.

    Article  CAS  PubMed  Google Scholar 

  46. Schneider S, Peters J, Bromberg U, Brassen S, Menz MM, Miedl SF, et al. Boys do it the right way: sex-dependent amygdala lateralization during face processing in adolescents. Neuroimage. 2011;56:1847–53.

    Article  CAS  PubMed  Google Scholar 

  47. •• Yang J, Zhang S, Lou Y, Long Q, Liang Y, Xie S, et al. The increased sex differences in susceptibility to emotional stimuli during adolescence: an event-related potential study. Front Hum Neurosci. 2018;11:660 This study measures reactivity to emotional stimuli utilizing both self-report measures of mood, as well as EEG to measure event-related potential. These are the first results that show puberty-related sex differences in sensitivity to negative emotional stimuli. These results add to growing body of evidence showing sex differences in neural functioning across puberty as well as adolescent females’ increased sensitivity to negative emotional stimuli, which offer important implications for understanding of psychopathology, including substance use risk.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Hardee JE, Cope LM, Munier EC, Welsh RC, Zucker RA, Heitzeg MM. Sex differences in the development of emotion circuitry in adolescents at risk for substance abuse: a longitudinal fMRI study. Soc Cogn Affect Neurosci. 2017;12(6):965–75 This recent longitudinal study examines a sample of youth with family histories of alcohol use disorders. This multimethod design utilizes both self-report of internalizing symptoms and fMRI to examine changes in emotion circuitry across adolescent development and highlights differences in males and females. Results add to evidence for female internalizing path to substance use risk.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nolen-Hoeksema S, Larson J, Grayson C. Explaining the gender difference in depressive symptoms. J Pers Soc Psychol. 1999;77(5):1061–72.

    Article  CAS  PubMed  Google Scholar 

  50. Leadbeater BJ, Kuperminc GP, Blatt SJ, Hertzog C. A multivariate model of gender differences in adolescents’ internalizing and externalizing problems. Dev Psychol. 1999;35(5):1268–82.

    Article  CAS  PubMed  Google Scholar 

  51. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517(7534):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ernst M, Mueller SC. The adolescent brain: insights from functional neuroimaging research. Dev Neurobiol. 2008;68:729–43.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goddings A-L, Mills KL, Clasen LS, Giedd JN, Viner RM, Blakemore S-J. The influence of puberty on subcortical brain development. Neuroimage. 2014;88:242–51.

    Article  PubMed  Google Scholar 

  54. Neufang S, Specht K, Hausmann M, Güntürkün O, Herpertz-Dahlmann B, Fink GR, et al. Sex differences and the impact of steroid hormones on the developing human brain. Cereb Cortex. 2009;19:464–73.

    Article  PubMed  Google Scholar 

  55. Bramen JE, Hranilovich J, Dahl RE, Forbes EE, Chen J, Toga AW, et al. Puberty influences medial temporal lobe and cortical gray matter maturation differently in boys than girls matched for sexual maturity. Cereb Cortex. 2011;21:636–46.

    Article  PubMed  Google Scholar 

  56. Lopez-Larson MP, Anderson JS, Ferguson M, Yurgelun-Todd D. Local brain connectivity and associations with gender and age. Dev Cogn Neurosci. 2011;1:187–97.

    Article  PubMed  Google Scholar 

  57. Kilpatrick LA, Zald DH, Pardo JV, Cahill LF. Sex-related differences in amygdala functional connectivity during resting conditions. Neuroimage. 2006;30(2):452–61.

    Article  CAS  PubMed  Google Scholar 

  58. Ahmed EI, Zehr JL, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL. Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat Neurosci. 2008;11:995–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rubinow MJ, Juraska JM. Neuron and glia numbers in the basolateral nucleus of the amygdala from preweaning through old age in male and female rats: a stereological study. J Comp Neurol. 2009;512:717–25.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Alarcón G, Cservenka A, Rudolph MD, Fair DA, Nagel BJ. Developmental sex differences in resting state functional connectivity of amygdala sub-regions. NeuroImage. 2015;115:235–44.

    Article  PubMed  Google Scholar 

  61. Eiland L, Romeo RD. Stress and the developing adolescent brain. Neuroscience. 2013;249:162–71.

    Article  CAS  PubMed  Google Scholar 

  62. Gunnar MR, Wewerka S, Frenn K, Long JD, Griggs C. Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: normative changes and associations with puberty. Dev Psychopathol. 2009;21(1):69–85.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Burghy CA, Stodola DE, Ruttle PL, Molloy EK, Armstrong JM, Oler JA, et al. Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nat Neurosci. 2012;15:1736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Young E, Korszun A. Sex, trauma, stress hormones and depression. Mol Psychiatry. 2010;15(1):23.

    Article  CAS  PubMed  Google Scholar 

  65. Jankford R, Solomon MB, Albertz J, Flak JN, Zhang R, Herman JP. Stress vulnerability during adolescent development in rats. Endocrinology. 2010;152(2):629–38.

    Article  CAS  Google Scholar 

  66. Klein ZA, Romeo RD. Changes in hypothalamic–pituitary–adrenal stress responsiveness before and after puberty in rats. Horm Behav. 2013;64(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  67. Romeo RD. Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Front Neuroendocrinol. 2010;31(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  68. Evuarherhe O, Leggett J, Waite E, Kershaw Y, Lightman S. Reversal of the hypothalamo-pituitary–adrenal response to oestrogens around puberty. J Endocrinol. 2009;202(2):279–85.

    Article  CAS  PubMed  Google Scholar 

  69. Veldhuis JD, Sharma A, Roelfsema F. Age-dependent and gender-dependent regulation of hypothalamic-adrenocorticotropic-adrenal axis. Endocrinol Metab Clin. 2013;42(2):201–25.

    Article  CAS  Google Scholar 

  70. McCormick CM, Green MR. From the stressed adolescent to the anxious and depressed adult: investigations in rodent models. Neuroscience. 2013;249:242–57.

    Article  CAS  PubMed  Google Scholar 

  71. Kuntsche E, Müller S. Why do young people start drinking? Motives for first-time alcohol consumption and links to risky drinking in early adolescence. Eur Addict Res. 2012;18(1):34–9.

    Article  PubMed  Google Scholar 

  72. Varlinskaya EI, Truxell EM, Spear LP. Sex differences in sensitivity to the social consequences of acute ethanol and social drinking during adolescence. Behav Brain Res. 2015;282:6–13.

    Article  PubMed  Google Scholar 

  73. Hulvershorn LA, Hummer TA, Fukunaga R, Leibenluft E, Finn P, Cyders MA, et al. Neural activation during risky decision-making in youth at high risk for substance use disorders. Psychiatry Res Neuroimaging. 2015;233(2):102–11.

    Article  Google Scholar 

  74. • Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cogn Neurosci. 2018;32:4–7 Provides an overview of the large multi-site study examining adolescent brain development.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Hulvershorn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Adolescent / Young Adult Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dir, A.L., Hulvershorn, L.A. Sex Differences in Adolescent Neurobiological Risk for Substance Use and Substance Use Disorders. Curr Addict Rep 6, 514–521 (2019). https://doi.org/10.1007/s40429-019-00276-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-019-00276-w

Keywords

Navigation