Skip to main content

Advertisement

Log in

Neurofeedback in Substance Use and Overeating: Current Applications and Future Directions

  • Food Addiction (A Meule, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Substance use and overeating share phenomenological and neurophysiological characteristics. Researchers suggested that both dysfunctional behaviors may be improved with brain-directed treatments. This paper reviews 21 recent studies with applications of neurofeedback—an established brain-directed treatment technique—in both areas.

Recent Findings

While neurofeedback for substance use has a longer tradition, related research in the field of overeating emerged only recently. Encephalographic neurofeedback interventions in both areas show promising effects like reduced craving and psychological improvements. For functional brain imaging neurofeedback, most studies were still feasibility-focused. Participants were enabled to regulate their brain activity but effects on psychological outcomes remain unclear.

Summary

Neurofeedback may constitute a promising brain-directed treatment adjunct for substance use and overeating. However, further empirical foundation is needed—especially for functional brain imaging neurofeedback. Well-controlled study designs, comprehensive outcome assessments, and improved physiological methodology would increase our knowledge on the efficacy of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Avena NM, Bocarsly ME, Hoebel BG, Gold MS. Overlaps in the nosology of substance abuse and overeating: the translational implications of “food addiction”. Curr Drug Abuse Rev. 2011;4:133–9. doi:10.2174/1874473711104030133.

    Article  PubMed  Google Scholar 

  2. Davis C, Carter JC. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite. 2009;2009(53):1–8. doi:10.1016/j.appet.2009.05.018.

    Article  Google Scholar 

  3. Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26:165–9. doi:10.1097/MOG.0b013e328336528d.

    Article  PubMed  Google Scholar 

  4. Ziauddeen H, Fletcher PC. Is food addiction a valid and useful concept? Obes Rev. 2013;14:19–28. doi:10.1111/j.1467-789X.2012.01046.x.

    Article  CAS  PubMed  Google Scholar 

  5. Avena NM, Gearhardt AN, Gold MS, Wang GJ, Potenza MN. Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data. Nat Rev Neurosci. 2012;13:514. doi:10.1038/nrn3212-c1.

    Article  CAS  PubMed  Google Scholar 

  6. Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18. doi:10.1111/j.1467-789X.2012.01031.x.

    Article  CAS  PubMed  Google Scholar 

  7. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68:808–16. doi:10.1001/archgenpsychiatry.2011.32.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN. Prefrontal–striatal pathway underlies cognitive regulation of craving. P Natl Acad Sci USA. 2010;2010(107):14811–6. doi:10.1073/pnas.1007779107.

    Article  Google Scholar 

  9. Heatherton TF, Wagner DD. Cognitive neuroscience of self-regulation failure. Trends Cogn Sci. 2011;15:132–9. doi:10.1016/j.tics.2010.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dutra L, Stathopoulou G, Basden SL, Leyro TM, Powers MB, Otto MW. A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry. 2008;165:179–87. doi:10.1176/appi.ajp.2007.06111851.

    Article  PubMed  Google Scholar 

  11. Brandon TH, Vidrine JI, Litvin EB. Relapse and relapse prevention. Annu Rev Clin Psychol. 2007;3:257–84. doi:10.1146/annurev.clinpsy.3.022806.091455.

    Article  PubMed  Google Scholar 

  12. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clinical. 2015;8:1–31. doi:10.1016/j.nicl.2015.03.016.

    Article  CAS  Google Scholar 

  13. Feldstein Ewing SW, Chung T. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior. Psychol Addict Behav. 2013;27:329–35. doi:10.1037/a0031491.

    Article  PubMed  Google Scholar 

  14. Whitten LA. Translational neuroscience and potential contributions of functional magnetic resonance imaging (fMRI) to the prevention of substance misuse and antisocial behavior. Prev Sci. 2013;14:238–46. doi:10.1007/s11121-012-0341-y.

    Article  PubMed  Google Scholar 

  15. Schmidt U, Campbell IC. Treatment of eating disorders can not remain ‘brainless’: the case for brain-directed treatments. Eur Eat Disord Rev. 2013;21:425–7. doi:10.1002/erv.2257.

    Article  PubMed  Google Scholar 

  16. Cannon RL. Editorial perspective: defining neurofeedback and its functional processes. NeuroRegul. 2015;2:60–9. doi:10.15540/nr.2.2.60.

    Article  Google Scholar 

  17. Hammond DC. What is neurofeedback: an update. J Neurother. 2011;15:305–36. doi:10.1080/10874208.2011.623090.

    Article  Google Scholar 

  18. Niv S. Clinical efficacy and potential mechanisms of neurofeedback. Pers Indiv Differ. 2013;54:676–86. doi:10.1016/j.paid.2012.11.037.

    Article  Google Scholar 

  19. Sherlin LH, Arns M, Lubar J, Heinrich H, Kerson C, Strehl U, et al. Neurofeedback and basic learning theory: implications for research and practice. J Neurother. 2011;15:292–304. doi:10.1080/10874208.2011.623089.

    Article  Google Scholar 

  20. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18:86–100. doi:10.1038/nrn.2016.164.

  21. Christoffersen GR, Schachtman TR. Electrophysiological CNS-processes related to associative learning in humans. Behav Brain Res. 2016;296:211–32. doi:10.1016/j.bbr.2015.09.011.

    Article  PubMed  Google Scholar 

  22. Glannon W. Neuromodulation, agency and autonomy. Brain Topogr. 2014;27:46–54. doi:10.1007/s10548-012-0269-3.

    Article  PubMed  Google Scholar 

  23. • Strehl U. What learning theories can teach us in designing neurofeedback treatments. Front Hum Neurosci. 2014;8:894. doi:10.3389/fnhum.2014.00894. This paper points out important methodological issues that should be considered in the design of neurofeedback intervention for clinical applications

    PubMed  PubMed Central  Google Scholar 

  24. • Thibault RT, Lifshitz M, Birbaumer N, Raz A. Neurofeedback, self-regulation, and brain imaging: clinical science and fad in the service of mental disorders. Psychother Psychosom. 2015;84:193–207. doi:10.1159/000371714. This paper provides a very good overview on common neurofeedback methods but also takes a very critical look at the neurofeedback approach, followed by good suggestions for approaches that tackle methodological problems

    Article  PubMed  Google Scholar 

  25. • Gruzelier JH. EEG neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neurosci Biobehav Rev. 2014;44:159–82. doi:10.1016/j.neubiorev.2014.03.015. This recent review explains several different outcomes in neurofeedback research and describes a wide range of theoretical and methodological matters that neurofeedback researchers should be informed about and address in their studies

    Article  PubMed  Google Scholar 

  26. Yuan H, Young KD, Phillips R, Zotev V, Misaki M, Bodurka J. Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain connectivity. 2014;4:690–701. doi:10.1089/brain.2014.0262.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yucha C, Montgomery D. Evidence-based practice in biofeedback and neurofeedback. Wheat Ridge: AAPB; 2008.

    Google Scholar 

  28. Trudeau DL. EEG biofeedback for addictive disorders—the state of the art in 2004. J Adult Dev. 2005;12:139–46. doi:10.1007/s10804-005-7030-z.

    Article  Google Scholar 

  29. Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy and recommendations for further research. Appl Psychophys Biof. 2008;33:1–28. doi:10.1007/s10484-007-9047-5.

    Article  Google Scholar 

  30. Weiskopf N. Real-time fMRI and its application to neurofeedback. NeuroImage. 2012;62:682–92. doi:10.1016/j.neuroimage.2011.10.009.

    Article  PubMed  Google Scholar 

  31. Peniston EG, Kulkosky PJ. Alpha-theta brainwave training and beta endorphin levels in alcoholics. Alcohol Clin Exp Res. 1989;13:271–9.

    Article  CAS  PubMed  Google Scholar 

  32. Peniston EG, Kulkosky PJ. Alcoholic personality and alpha-theta brainwave training. Med Psychother. 1990;2:37–55.

    Google Scholar 

  33. Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, et al. Beta power in the EEG of alcoholics. Biol Psychiatry. 2002;52:831–42. doi:10.1016/S0006-3223(02)01362-8.

    Article  PubMed  Google Scholar 

  34. Scott W, Kaiser D. Augmenting chemical dependency treatment with neurofeedback training. J Neurother. 1998;3:66.

    Google Scholar 

  35. Scott WC, Kaiser D, Othmer S, Sideroff SI. Effects of an EEG biofeedback protocol on a mixed substance abusing population. Am J Drug Alcohol Ab. 2005;31:455–69. doi:10.1081/ADA-200056807.

    Article  Google Scholar 

  36. Stevens L, Verdejo-García A, Goudriaan AE, Roeyers H, Dom G, Vanderplasschen W. Impulsivity as a vulnerability factor for poor addiction treatment outcomes: a review of neurocognitive findings among individuals with substance use disorders. J Subst Abus Treat. 2014;47:58–72. doi:10.1016/j.jsat.2014.01.008.

    Article  Google Scholar 

  37. Schneider F, Elbert T, Heimann H, Welker A, Stetter F, Mattes R, et al. Self-regulation of slow cortical potentials in psychiatric patients: alcohol dependency. Biofeedback Self-Reg. 1993;18:23–32. doi:10.1007/BF00999511.

    Article  CAS  Google Scholar 

  38. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, et al. Real-time fMRI neurofeedback: progress and challenges. NeuroImage. 2013;76:386–99. doi:10.1016/j.neuroimage.2013.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Thibault RT, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex. 2016;74:247–61. doi:10.1016/j.cortex.2015.10.024. This paper extensively introduces and argues for the use of proper approaches and especially control groups in clinical neurofeedback research

    Article  PubMed  Google Scholar 

  40. de Charms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, et al. Control over brain activation and pain learned by using real-time functional MRI. P Natl Acad Sci USA. 2005;102:18626–31. doi:10.1073/pnas.0505210102.

    Article  Google Scholar 

  41. Tang YY, Posner MI, Rothbart MK, Volkow ND. Circuitry of self-control and its role in reducing addiction. Trends Cognitive Sci. 2015;19:439–44. doi:10.1016/j.tics.2015.06.007.

    Article  Google Scholar 

  42. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38. doi:10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  43. Tang DW, Fellows LK, Small DM, Dagher A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav. 2012;106:317–24.

    Article  CAS  PubMed  Google Scholar 

  44. Bartholdy S, Musiat P, Campbell IC, Schmidt U. The potential of neurofeedback in the treatment of eating disorders: a review of the literature. Eur Eat Disord Rev. 2013;21:456–63. doi:10.1002/erv.2250.

    Article  PubMed  Google Scholar 

  45. Dehghani-Arani F, Rostami R, Nostratabadi M. Effectiveness of neurofeedback training as a treatment for opioid-dependent patients. Clin EEG Neurosci. 2010;41:170–7. doi:10.1177/155005941004100313.

    Article  Google Scholar 

  46. Dehghani-Arani F, Rostami R, Nadali H. Neurofeedback training for opiate addiction: improvement of mental health and craving. Appl Psychophys Biof. 2013;38:133–41. doi:10.1007/s10484-013-9218-5.

    Article  Google Scholar 

  47. • Hashemian P. The effectiveness of neurofeedback therapy in craving of methamphetamine use. Open J Psychiatry. 2015;5:177–9. doi:10.4236/ojpsych.2015.52020. This study provides the only EEG neurofeedback study in our review that examined a sham control group and reported superiority of veritable EEG neurofeedback to sham neurofeedback

    Article  Google Scholar 

  48. Horrell T, El-Baz A, Baruth J, Tasman A, Sokhadze G, Stewart C, Sokhadze E. Neurofeedback effects on evoked and induced EEG gamma band reactivity to drug-related cues in cocaine addiction. J Neurother. 2010;14(3):195–216. doi:10.1080/10874208.2010.501498.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Rostami R, Dehghani-Arani F. Neurofeedback training as a new method in treatment of crystal methamphetamine dependent patients: a preliminary study. Appl Psychophys Biof. 2015;40:151–61. doi:10.1007/s10484-015-9281-1. This study provides a good overview on the most prevalent protocol in recent EEG neurofeedback for substance use (Scott-Kaiser modification of the Peniston protocol) and further constitutes the study with the highest statistical power in our review, showing efficacy of EEG neurofeedback for the treatment of methamphetamine dependence

    Article  CAS  Google Scholar 

  50. Lackner N, Unterrainer HF, Skliris D, Wood G, Wallner-Liebmann SJ, Neuper C, Gruzelier JH. The effectiveness of visual short-time neurofeedback on brain activity and clinical characteristics in alcohol use disorders: practical issues and results. Clin EEG Neurosci. 2015;47:188–95. doi:10.1177/1550059415605686.

    Article  PubMed  Google Scholar 

  51. • Keith JR, Rapgay L, Theodore D, Schwartz JM, Ross JL. An assessment of an automated EEG biofeedback system for attention deficits in a substance use disorders residential treatment setting. Psychol Addict Behav. 2015;9:17–25. doi:10.1037/adb0000016. This paper is the only study to date that compared clinician-guided and automated neurofeedback with comparable beneficial effects. Further, the study design of this trial is highly commendable

    Article  Google Scholar 

  52. Canterberry M, Hanlon CA, Hartwell KJ, Li X, Owens M, LeMatty T, et al. Sustained reduction of nicotine craving with real-time neurofeedback: exploring the role of severity of dependence. Nicotine Tob Res. 2013;15:2120–4. doi:10.1093/ntr/ntt122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanlon CA, Hartwell KJ, Canterberry M, Li X, Owens M, LeMatty T, et al. Reduction of cue-induced craving through realtime neurofeedback in nicotine users: the role of region of interest selection and multiple visits. Psychiatry Res-Neuroim. 2013;213:79–81. doi:10.1016/j.pscychresns.2013.03.003.

    Article  Google Scholar 

  54. • Hartwell KJ, Hanlon CA, Li X, Borckardt JJ, Canterberry M, Prisciandaro JJ, et al. Individualized real-time fMRI neurofeedback to attenuate craving in nicotine-dependent smokers. J Psychiatry Neurosci 2016;41:48–55. doi:10.1503/jpn.140200. This study was the only fMRI neurofeedback study for nicotine craving that included a no-feedback control group, showing superior effects of fMRI neurofeedback with regard to reductions in craving-related brain activity

  55. • Kim DY, Yoo SS, Tegethoff M, Meinlschmidt G, Lee JH. The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings. J Cogn Neurosci. 2015;27:1552–72. doi:10.1162/jocn_a_00802. This trial was the first one to compare veritable fMRI neurofeedback for substance use that either did or did not include feedback on functional connectivity. The latter one lead to greater modulation of neural activity related to cigarette craving

    Article  PubMed  Google Scholar 

  56. Li X, Hartwell KJ, Borckardt J, Prisciandaro JJ, Saladin ME, Morgan PS, et al. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addicti Biol. 2013;18(4):739–48. doi:10.1111/j.1369-1600.2012.00449.

    Article  Google Scholar 

  57. • Kirsch M, Gruber I, Ruf M, Kiefer F, Kirsch P. Real-time functional magnetic resonance imaging neurofeedback can reduce striatal cue-reactivity to alcohol stimuli. Addict Biology. 2015;21:982–92. doi:10.1111/adb.12278. This study compared veritable and yolk fMRI neurofeedback, showing that only veritable neurofeedback enabled participants to downregulate striatal activity

    Article  Google Scholar 

  58. • Karch S, Keeser D, Hümmer S, Paolini M, Kirsch V, Karali T, et al. Modulation of craving related brain responses using real-time fMRI in patients with alcohol use disorder. PLoS One. 2015;10:e0133034. doi:10.1371/journal.pone.0133034. This was the only fMRI neurofeedback study that included a patient sample with alcohol dependency, showing that there is a wide variance in the ability of clinical patients to regulate the BOLD signal

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Schmidt J, Martin A. Neurofeedback reduces overeating episodes in female restrained eaters: a randomized controlled pilot-study. Appl Psychophys Biof. 2015;40:283–95. doi:10.1007/s10484-015-9297-6. This study was the first study to apply EEG neurofeedback to explicitly target overeating behaviors, showing beneficial effects compared to a waitlist. It is further the first study to develop and apply a cue exposure EEG neurofeedback protocol

    Article  Google Scholar 

  60. • Schmidt J, Martin A. Neurofeedback against binge eating: a randomized controlled trial in a female subclinical threshold sample. Eur Eat Disord Rev. 2016;24:406–16. doi:10.1002/erv.2453. This RCT provides an example for the use of non-sham control groups in EEG neurofeedback research

    Article  PubMed  Google Scholar 

  61. • Imperatori C, Valenti EM, Della Marca G, Amoroso N, Massullo C, Carbone GA, et al. Coping food craving with neurofeedback. Evaluation of the usefulness of alpha/theta training in a non-clinical sample. Int J Psychophysiol 2017;112:89–97. doi:10.1016/j.ijpsycho.2016.11.010. This study was the first to transfer an alpha-theta training in EEG neurofeedback to the field of phenomena related to eating behavior with beneficial effects on food craving and observable changes in the resting-EEG, assessed with sophisticated high-resolution EEG analyses. Further, the well-designed report of the trial and blinded study design have to be highlighted

    PubMed  Google Scholar 

  62. Chirita-Emandi A, Puiu M. Outcomes of neurofeedback training in childhood obesity management: a pilot study. J Altern Complem Med. 2014;20:831–7. doi:10.1089/acm.2014.0040.

    Article  Google Scholar 

  63. Frank S, Lee S, Preissl H, Schultes B, Birbaumer N, Veit R. The obese brain athlete: self-regulation of the anterior insula in adiposity. PLoS One. 2012;7:e42570. doi:10.1371/journal.pone.0042570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Ihssen N, Sokunbi MO, Lawrence AD, Lawrence NS, Linden DE. Neurofeedback of visual food cue reactivity: a potential avenue to alter incentive sensitization and craving. Brain Imag Behav. 2016; doi:10.1007/s11682-016-9558-x. This is the first study that explicitly examined fMRI neurofeedback for regulation of visual food-cue reactivity. The applied motivational neurofeedback further constitutes an interesting new design for neurofeedback applications

  65. • Spetter MS, Malekshahi R, Birbaumer N, Lührs M, van der Veer AH, Scheffler K, et al. Volitional regulation of brain responses to food stimuli on overweight and obese subjects: a real-time fMRI feedback study. Appetite 2017;112:188–95. doi:10.1016/j.appet.2017.01.032. This is the first fMRI neurofeedback study that examined a protocol based on functional connectivity in the domain of eating behavior. It further demonstrates how behavioral food intake tests can be used to determine outcomes of the interventions

  66. Boswell RG, Kober H. Food cue reactivity and craving predict eating and weight gain: a meta-analytic review. Obes Rev. 2016;17:159–77. doi:10.1111/obr.12354.

    Article  PubMed  Google Scholar 

  67. Weiss F. Neurobiology of craving, conditioned reward and relapse. Curr Opin Pharmacol. 2005;5:9–19. doi:10.1016/j.coph.2004.11.001.

    Article  CAS  PubMed  Google Scholar 

  68. Welberg L. Addiction: craving: a core issue. Nat Rev Neurosci. 2013;14:307. doi:10.1038/nrn3483.

    Article  CAS  PubMed  Google Scholar 

  69. Ros T, Théberge J, Frewen PA, Kluetsch R, Densmore M, Calhoun VD, Lanius RA. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage. 2013;65:324–35. doi:10.1016/j.neuroimage.2012.09.046.

    Article  PubMed  Google Scholar 

  70. Ninaus M, Kober SE, Witte M, Koschutnig K, Stangl M, Neuper C, Wood G. Neural substrates of cognitive control under the belief of getting neurofeedback training. Front Hum Neurosci. 2013;7:62–71. doi:10.3389/fnhum.2013.00914.

    Article  Google Scholar 

  71. Chung T, Noronha A, Carroll KM, Potenza MN, Hutchison K, Calhoun VD, et al. Brain mechanisms of change in addiction treatment: models, methods, and emerging findings. Curr Addict Rep. 2016;3:332–42. doi:10.1007/s40429-016-0113-z.

    Article  PubMed  Google Scholar 

  72. Potenza MN, Sofuoglu M, Carroll KM, Rounsaville BJ. Neuroscience of behavioral and pharmacological treatments for addictions. Neuron. 2011;69:695–712. doi:10.1016/j.neuron.2011.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garrison KA, Potenza MN. Neuroimaging and biomarkers in addiction treatment. Curr Psychiatry Rep. 2014;16:513. doi:10.1007/s11920-014-0513-5.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Campbell M, Fitzpatrick R, Haines A, Kinmonth AL. Framework for design and evaluation of complex interventions to improve health. Brit Med J. 2000;321:694–6. doi:10.1136/bmj.321.7262.694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. La Vaque TJ, Rossiter T. The ethical use of placebo controls in clinical research: the Declaration of Helsinki. Appl Psychophys Biof. 2001;26:23–37. doi:10.1023/A:1009563504319.

    Article  CAS  Google Scholar 

  76. Colloca L, Miller FG. The nocebo effect and its relevance for clinical practice. Psychosom Med. 2011;73:598–603. doi:10.1097/PSY.0b013e3182294a50.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kirshenbaum AP, Olsen DM, Bickel WK. A quantitative review of the ubiquitous relapse curve. J Subst Abus Treat. 2009;36:8–17. doi:10.1016/j.jsat.2008.04.001.

    Article  Google Scholar 

  78. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82:222S–5S.

    CAS  PubMed  Google Scholar 

  79. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76. doi:10.1038/nrn3475.

    Article  CAS  PubMed  Google Scholar 

  80. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. P Natl Acad Sci USA. 2016;113:7900–5. doi:10.1073/pnas.1602413113.

    Article  CAS  Google Scholar 

  81. Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2001(2):685–94. doi:10.1038/35094500.

    Article  Google Scholar 

  82. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. P Natl Acad Sci USA. 2001;98:676–82. doi:10.1073/pnas.98.2.676.

    Article  CAS  Google Scholar 

  83. Porjesz B, Rangaswamy M, Kamarajan C, Jones KA, Padmanabhapillai A, Begleiter H. The utility of neurophysiological markers in the study of alcoholism. Clin Neurophysiol. 2005;116:993–1018. doi:10.1016/j.clinph.2004.12.016.

    Article  PubMed  Google Scholar 

  84. Ersche KD, Williams GB, Robbins TW, Bullmore ET. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neurobiol. 2013;23:615–24. doi:10.1016/j.conb.2013.02.017.

    Article  CAS  PubMed  Google Scholar 

  85. Parvaz MA, Alia-Klein N, Woicik PA, Volkow ND, Goldstein RZ. Neuroimaging for drug addiction and related behaviors. Rev Neurosci. 2011;22(6):609–24. doi:10.1515/RNS.2011.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. • Stoeckel LE, Garrison KA, Ghosh SS, Wighton P, Hanlon CA, Gilman JM, et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. NeuroImage-Clin. 2014;5:245–55. doi:10.1016/j.nicl.2014.07.002. This paper provides a very good guideline for the design and application of studies using fMRI neurofeedback

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keil A, Debener S, Gratton G, Junghöfer M, Kappenman ES, Luck SJ, et al. Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology. 2014;51:1–21. doi:10.1111/psyp.12147.

    Article  PubMed  Google Scholar 

  88. Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Trials. 2010;11:32. doi:10.1186/1745-6215-11-32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Schmidt.

Ethics declarations

Conflict of Interest

Jennifer Schmidt, Christian Kärgel, and Mareile Opwis declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Food Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, J., Kärgel, C. & Opwis, M. Neurofeedback in Substance Use and Overeating: Current Applications and Future Directions. Curr Addict Rep 4, 116–131 (2017). https://doi.org/10.1007/s40429-017-0137-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-017-0137-z

Keywords

Navigation