24-Epibrassinolide induces protection against nickel excess in soybean plants: anatomical evidences

Abstract

Nickel (Ni) excess delays plant growth due to damage to root and leaf structures, reducing nutrient uptake, and carbon fixation, respectively. 24-Epibrassinolide (EBR) is a biodegradable plant growth regulator extracted from plant tissues and is highly efficient against oxidative stress. The objective of this research is to determine whether EBR can improve tolerance to toxic metals and the possible mechanism involved by evaluating the root and leaf structures of soybean plants under high Ni concentrations. The experiment was randomized with four treatments, including two Ni concentrations (0 and 200 µM Ni, described as – Ni2+ and + Ni2+, respectively) and two concentrations of 24-epibrassinolide (0 and 100 nM EBR, described as – EBR and + EBR, respectively). Ni2+ excess provoked damage to root and leaf structures, causing anatomical disorders in these tissues. In roots, EBR increased the epidermis (27%), protecting the root against Ni2+ ions. For leaf tissue, significant increases in palisade (11%) and spongy parenchyma (29%) were detected in plants sprayed with EBR and exposed to Ni2+, which were intrinsically related to stomatal density and stomatal functionality. Our results confirm that pretreatment with 100 nM EBR clearly mitigated the anatomical disorders occasioned by excess Ni on the leaf and root structures of soybean plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data are available upon request to the corresponding author.

References

  1. Abd Allah EF, Hashem A, Alam P, Ahmad P (2019) Silicon alleviates nickel-induced oxidative stress by regulating antioxidant defense and glyoxalase systems in mustard plants. Journal of Plant Growth Regulation 38:1260–1273. https://doi.org/10.1007/s00344-019-09931-y

    CAS  Article  Google Scholar 

  2. Ahammed GJ, Choudhary SP, Chen S et al (2013) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany 64:199–213. https://doi.org/10.1093/jxb/ers323

    CAS  Article  PubMed  Google Scholar 

  3. Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. Journal of Plant Growth Regulation 37:1007–1024. https://doi.org/10.1007/s00344-018-9855-2

    CAS  Article  Google Scholar 

  4. Akhtar N, Hameed M, Hamid A et al (2018) Effects of nickel toxicity on morphological and physiological aspects of osmoregulation in Typha domingensis (Typhaceae) populations. Limnology 19:185–197. https://doi.org/10.1007/s10201-017-0529-8

    CAS  Article  Google Scholar 

  5. Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany 63:43–57. https://doi.org/10.1093/jxb/err266

    CAS  Article  PubMed  Google Scholar 

  6. Azhar N, Su N, Shabala L, Shabala S (2017) Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+ efflux via depolarization-activated K+ channels. Plant Cell and Physiology 58:802–810. https://doi.org/10.1093/pcp/pcx026

    CAS  Article  Google Scholar 

  7. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry 47:1–8. https://doi.org/10.1016/j.plaphy.2008.10.002

    CAS  Article  PubMed  Google Scholar 

  8. Balal RM, Shahid MA, Javaid MM et al (2016) Foliar treatment with Lolium perenne (Poaceae) leaf extract alleviates salinity and nickel-induced growth inhibition in pea. Brazilian Journal of Botany 39:453–463. https://doi.org/10.1007/s40415-016-0253-3

    Article  Google Scholar 

  9. Bao F, Shen J, Brady SR et al (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology 134:1624–1631. https://doi.org/10.1104/pp.103.036897

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Batista BL, Nigar M, Mestrot A et al (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. Journal of Experimental Botany 65:1467–1479. https://doi.org/10.1093/jxb/eru018

    CAS  Article  PubMed  Google Scholar 

  11. Bazihizina N, Redwan M, Taiti C et al (2015) Root based responses account for Psidium guajava survival at high nickel concentration. Journal of Plant Physiology 174:137–146. https://doi.org/10.1016/j.jplph.2014.10.011

    CAS  Article  PubMed  Google Scholar 

  12. Chen J, Li L, Liu Z et al (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Research 19:887–898. https://doi.org/10.1038/cr.2009.58

    CAS  Article  PubMed  Google Scholar 

  13. Correia L, Marrocos P, Montalván Olivares DM et al (2018) Bioaccumulation of nickel in tomato plants: risks to human health and agro-environmental impacts. Environment Monitoring and Assessment 190:317. https://doi.org/10.1007/s10661-018-6658-7

    CAS  Article  Google Scholar 

  14. Cunha LFS, Oliveira VP, Nascimento AWS et al (2020) Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. Physiologia Plantarum. https://doi.org/10.1111/ppl.13182

    Article  PubMed  Google Scholar 

  15. Eburneo L, Ribeiro-Júnior NG, Karsburg IV et al (2017) Anatomy and micromorphometric analysis of leaf Catasetum x apolloi Benelli & Grade with addition of potassium silicate under different light sources. Brazilian Journal of Biology 77:140–149. https://doi.org/10.1590/1519-6984.12015

    CAS  Article  Google Scholar 

  16. Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences 106:10343–10347. https://doi.org/10.1073/pnas.0904209106

    Article  Google Scholar 

  17. Garcia JS, Dalmolin ÂC, Cortez PA et al (2018) Short-term cadmium exposure induces gas exchanges, morphological and ultrastructural disturbances in mangrove Avicennia schaueriana young plants. Marine Pollution Bulletin 131:122–129. https://doi.org/10.1016/j.marpolbul.2018.03.058

    CAS  Article  PubMed  Google Scholar 

  18. Hacham Y, Holland N, Butterfield C et al (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848. https://doi.org/10.1242/dev.061804

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Li T, Wu C et al (2015) An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials 299:540–549. https://doi.org/10.1016/j.jhazmat.2015.07.041

    CAS  Article  PubMed  Google Scholar 

  20. Hussain MB, Ali S, Azam A et al (2013) Morphological, physiological and biochemical responses of plants to nickel stress: a review. African Journal of Agricultural Research 8:1596–1602. https://doi.org/10.5897/AJAR12.407

    CAS  Article  Google Scholar 

  21. Johansen DA (1940) Plant microtechnique, 1st edn. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  22. Kagale S, Divi UK, Krochko JE et al (2007) Brassinosteroid confers tolerance in arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225(353):364. https://doi.org/10.1007/s00425-006-0361-6

    CAS  Article  Google Scholar 

  23. Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. Ecotoxicology and Environment Safety 196:110483. https://doi.org/10.1016/j.ecoenv.2020.110483

    CAS  Article  Google Scholar 

  24. Kaya C, Ashraf M, Wijaya L, Ahmad P (2019) The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiology Biochemistry 143:119–128. https://doi.org/10.1016/j.plaphy.2019.08.024

    CAS  Article  PubMed  Google Scholar 

  25. Khripach V, Zhabinskii V, Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI Century. Annals of Botany 86:441–447. https://doi.org/10.1006/anbo.2000.1227

    CAS  Article  Google Scholar 

  26. Kohli SK, Handa N, Sharma A et al (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environmental Science and Pollution Research 25:15159–15173. https://doi.org/10.1007/s11356-018-1742-7

    CAS  Article  PubMed  Google Scholar 

  27. Kováčik J, Babula P (2017) Fluorescence microscopy as a tool for visualization of metal-induced oxidative stress in plants. Acta Physiologiae Plantarum 39:1–7. https://doi.org/10.1007/s11738-017-2455-0

    CAS  Article  Google Scholar 

  28. Li L, Xu J, Xu Z-H, Xue H-W (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753. https://doi.org/10.1105/tpc.105.034397

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Lima JV, Lobato AKS (2017) Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants 23:59–72. https://doi.org/10.1007/s12298-016-0410-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Luković J, Maksimović I, Zorić L et al (2009) Histological characteristics of sugar beet leaves potentially linked to drought tolerance. Industrial Crops and Products 30:281–286. https://doi.org/10.1016/j.indcrop.2009.05.004

    Article  Google Scholar 

  31. Maia CF, da Silva BRS, da Lobato AK, S, (2018) Brassinosteroids positively modulate growth: physiological, biochemical and anatomical evidence using two tomato genotypes contrasting to dwarfism. Journal of Plant Growth Regulation 37:1099–1112. https://doi.org/10.1007/s00344-018-9802-2

    CAS  Article  Google Scholar 

  32. Martins JPR, Verdoodt V, Pasqual M, De Proft M (2015) Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell, Tissue and Organ Culture 123:121–132. https://doi.org/10.1007/s11240-015-0820-5

    CAS  Article  Google Scholar 

  33. Meyer CJ, Peterson CA, Steudle E (2011) Permeability of Iris germanica’s multiseriate exodermis to water, NaCl, and ethanol. Journal of Experimental Botany 62:1911–1926. https://doi.org/10.1093/jxb/erq380

    CAS  Article  PubMed  Google Scholar 

  34. Minkina T, Fedorenko G, Nevidomskaya D et al (2018) Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Science of the Total Environment 636:392–401. https://doi.org/10.1016/j.scitotenv.2018.04.306

    CAS  Article  Google Scholar 

  35. Mir MA, Sirhindi G, Alyemeni MN et al (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. Journal of Plant Growth Regulation 37:1195–1209. https://doi.org/10.1007/s00344-018-9814-y

    CAS  Article  Google Scholar 

  36. Nishinari K, Fang Y, Guo S, Phillips GO (2014) Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocolloids 39:301–318. https://doi.org/10.1016/j.foodhyd.2014.01.013

    CAS  Article  Google Scholar 

  37. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    Article  Google Scholar 

  38. Pereira YC, Rodrigues F, Ricardo B et al (2020) 24-epibrassinolide induces protection against waterlogging and alleviates impacts on the root structures, photosynthetic machinery and biomass in soybean. Plant Signaling and Behaviour. https://doi.org/10.1080/15592324.2020.1805885

    Article  Google Scholar 

  39. Ramzani PMA, Khalid M, Anjum S et al (2017) Improving iron bioavailability and nutritional value of maize (Zea mays L.) in sulfur-treated calcareous soil. Archieves of Agronomy and Soil Science 63:1255–1266. https://doi.org/10.1080/03650340.2016.1266484

    CAS  Article  Google Scholar 

  40. Rizwan M, Mostofa MG, Ahmad MZ et al (2018) Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere 191:23–35. https://doi.org/10.1016/j.chemosphere.2017.09.068

    CAS  Article  PubMed  Google Scholar 

  41. dos Reis AR, de Queiroz Barcelos JP, de Souza Osório CRW et al (2017) A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environmental and Experimental Botany 144:76–87. https://doi.org/10.1016/j.envexpbot.2017.10.006

    CAS  Article  Google Scholar 

  42. Ribeiro AT, de Oliveira VP, de Oliveira Barros JU et al (2020) 24-Epibrassinolide mitigates nickel toxicity in young Eucalyptus urophylla ST Blake plants: nutritional, physiological, biochemical, anatomical and morphological responses. Annals of Forest Science. https://doi.org/10.1007/s13595-019-0909-9

    Article  Google Scholar 

  43. Sagardoy R, Vázquez S, Florez-Sarasa ID et al (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytologist 187:145–158. https://doi.org/10.1111/j.1469-8137.2010.03241.x

    CAS  Article  Google Scholar 

  44. Sanjukta S, Rai AK (2016) Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology 50:1–10. https://doi.org/10.1016/j.tifs.2016.01.010

    CAS  Article  Google Scholar 

  45. Santos LR, da Silva BRS, Pedron T et al (2020) 24-Epibrassinolide improves root anatomy and antioxidant enzymes in soybean plants subjected to zinc stress. Journal of Soil Science and Plant Nutrition 20:105–124. https://doi.org/10.1007/s42729-019-00105-z

    CAS  Article  Google Scholar 

  46. Sasse JM (2003) Physiological actions of brassinosteroids: an update. Journal of Plant Growth Regulation 22:276–288. https://doi.org/10.1007/s00344-003-0062-3

    CAS  Article  PubMed  Google Scholar 

  47. Segatto FB, Bisognin DA, Benedetti M et al (2004) A technique for the anatomical study of potato leaf epidermis. Ciência Rural 34:1597–1601. https://doi.org/10.1590/S0103-84782004000500042

    Article  Google Scholar 

  48. Sharma I, Pati PK, Bhardwaj R (2011) Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol Plant 33:1723–1735. https://doi.org/10.1007/s11738-010-0709-1

    CAS  Article  Google Scholar 

  49. Sirhindi G, Mir MA, Abd-Allah EF et al (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in glycine max under nickel toxicity. Frontiers in Plant Science 7:1–12. https://doi.org/10.3389/fpls.2016.00591

    Article  Google Scholar 

  50. Smet S, Cuypers A, Vangronsveld J, Remans T (2015) Gene networks involved in hormonal control of root development in arabidopsis thaliana: a framework for studying its disturbance by metal stress. International Journal of Molecular Science 16:19195–19224. https://doi.org/10.3390/ijms160819195

    CAS  Article  Google Scholar 

  51. Soares C, de Sousa A, Pinto A et al (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environment and Experimental Botany 122:115–125. https://doi.org/10.1016/j.envexpbot.2015.09.010

    CAS  Article  Google Scholar 

  52. Steel RG, Torrie JH, Dickey DA (2006) Principles and procedures of statistics: a biometrical approach, 3rd edn. Academic Internet Publishers, Moorpark

    Google Scholar 

  53. Tanveer M, Shahzad B, Sharma A et al (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiology and Biochemistry 130:69–79. https://doi.org/10.1016/j.plaphy.2018.06.035

    CAS  Article  PubMed  Google Scholar 

  54. Turan V, Ramzani PMA, Ali Q et al (2018) Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives of Agronomy and Soil Science 64:1053–1067. https://doi.org/10.1080/03650340.2017.1410542

    CAS  Article  Google Scholar 

  55. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857. https://doi.org/10.1105/tpc.111.094912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  57. Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany 62:4495–4506. https://doi.org/10.1093/jxb/err164

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Yuan L, Shu S, Sun J et al (2012) Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research 112:205–214. https://doi.org/10.1007/s11120-012-9774-1

    CAS  Article  PubMed  Google Scholar 

  59. Yusuf M, Fariduddin Q, Ahmad A (2011) 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85:1574–1584. https://doi.org/10.1016/j.chemosphere.2011.08.004

    CAS  Article  PubMed  Google Scholar 

  60. Zhan J, Twardowska I, Wang S et al (2019) Prospective sustainable production of safe food for growing population based on the soybean (Glycine max L. Merr.) crops under Cd soil contamination stress. Journal of Cleaner Production 212:22–36. https://doi.org/10.1016/j.jclepro.2018.11.287

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research had financial support from Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA/Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) and Universidade Federal Rural da Amazônia (UFRA/Brazil) to AKSL.

Author information

Affiliations

Authors

Contributions

AKSL was the advisor of this project, planned all phases of the research and critically revised the manuscript. MPS, CFM and BRSS conducted the experiment, performed anatomical determinations and wrote and edited the manuscript, while BLB carried out the nutritional determinations. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Allan Klynger da Silva Lobato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saraiva, M.P., Maia, C.F., da Silva, B.R.S. et al. 24-Epibrassinolide induces protection against nickel excess in soybean plants: anatomical evidences. Braz. J. Bot 44, 197–205 (2021). https://doi.org/10.1007/s40415-021-00701-3

Download citation

Keywords

  • Brassinosteroids
  • Glycine max (L.) Merr.
  • Leaf anatomy
  • Root structures
  • Toxic metal