Infra-specific variation of Acer cappadocicum (Sapindaceae): morphological and molecular approaches

Abstract

Besides Quercus, Acer L. genus is the largest tree genus in the Northern Hemisphere and consists of about 124–156 species. High morphological and molecular variability has led to infra-specific complexity within most species of this genus. In Iran, the Acer cappadocicum subsp. cappadocicum Gled. is distributed in eastern to western parts of the Hyrcanian forests. In this study, three leaf-morphotypes in A. cappadocicum Gled. were identified during sampling in a forest located in the Hyrcanian region, leading to obscuring taxonomic situations of this taxon. Against this backdrop, the present study was performed to clarify intraspecific situation of this valuable tree using both macro-/micromorphological and molecular approaches. Forty-five plant samples of A. cappadocicum were randomly selected within nine geographical regions of four provinces in Hyrcanian forests of Iran. Internal transcribed spacer (ITS) (for eight individuals) and inter-simple sequence repeat (ISSR) molecular markers (for 45 individuals) were used along with the epidermal scanning electron micrograph (SEM) of the leaf epidermis. Considering the obtained results, acceptance of the expected lower taxa in A. cappadocicum ssp. cappadocicum in north of Iran could not be supported by molecular evidence. Results of the study indicated no correlation between variations in leaf-morphology, ISSRs, and ITS. However, there are two main clusters in ITS tree without discrete morphological characters showing differentiation and variability in ITS region within this species. This subspecies was compared also with other subspecies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  Google Scholar 

  2. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Article  Google Scholar 

  3. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  Article  Google Scholar 

  4. Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439

    Article  Google Scholar 

  5. Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek P (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188–196

    CAS  Article  Google Scholar 

  6. de Jong P (2004) World maple diversity. International Maple Symposium. Westonbirt Arboretum and Royal Agricultural College Gloucestershire, England

  7. Delendick TJ (1990) A survey of foliar flavonoids in the Aceraceae. Mem N Y Bot Gard 54:1–129

    Google Scholar 

  8. Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366

    Article  Google Scholar 

  9. Denk T, Grimm G, Stögerer K, Langer M, Hemleben V (2002) The evolutionary history of Fagus in western Eurasia: evidence from genes, morphology and the fossil record. Plant Syst Evol 232:213–236

    Article  Google Scholar 

  10. Dereeper A et al (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    CAS  Article  Google Scholar 

  11. Dereeper A, Audic S, Claverie J-M, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8

    Article  Google Scholar 

  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  Article  Google Scholar 

  13. Flann NS, Moore KL, Ma L (2002) A small mobile robot for security and inspection operations. Control Eng Pract 10:1265–1270

    Article  Google Scholar 

  14. Ghasemzadeh Baraki S, Nikzat Siahkolaee S, Mousavi A (2018) Optimization of the genomic DNA extraction in some mosses. Rostaniha 19:165–175

    Google Scholar 

  15. Grimm GW, Thomas D (2014) The Colchic region as refuge for relict tree lineages: cryptic speciation in field maples. Turk J Bot 38:1050–1066

    Article  Google Scholar 

  16. Grimm GW, Renner SS, Stamatakis A, Hemleben V (2006) A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analysis of 606 sequences. Evol Bioinform 2:7–22

    Article  Google Scholar 

  17. Grimm G, Denk T, Hemleben V (2007) Evolutionary history and systematics of Acer section Acer–a case study of low-level phylogenetics. Plant Syst Evol 267:215–253

    Article  Google Scholar 

  18. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  19. Hammer Ø, Harper D, Ryan P (2001) PAST-palaeontological statistics, ver. 1.89. Palaeontol electron 4:1–9

    Google Scholar 

  20. Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol 161:585–594

    Article  Google Scholar 

  21. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  22. Jonas CS, Geber MA (1999) Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. Am J Bot 86:333–343

    CAS  Article  Google Scholar 

  23. Kalubi KN, Mehes-Smith M, Narendrula R, Michael P, Omri A (2015) Molecular analysis of red maple (Acer rubrum) populations from a reclaimed mining region in Northern Ontario (Canada): soil metal accumulation and translocation in plants. Ecotoxicology 24:636–647. https://doi.org/10.1007/s10646-014-1411-7

    CAS  Article  PubMed  Google Scholar 

  24. Koohdar F, Sheidai M, Talebi SM, Noormohammadi Z, Ghasemzadeh-Baraki S (2016) Genetic diversity, population structure and morphological variability in the Lallemantia royleana (Lamiaceae) from Iran. Phytol Balcan 22:29–38

    Google Scholar 

  25. Leestmans R (2005) Le refuge caspiens et son importance en biogéographie. Linn Belg 20:97–102

    Google Scholar 

  26. Liu C, Cong J, Shen H, Lin C, Saito Y, Ide Y (2017) Genetic relationships among sympatric varieties of Acer mono in the Chichibu Mountains and Central Hokkaido, Japan. J For Res 28:699–704

    CAS  Article  Google Scholar 

  27. Murray E (1969) Aceraceae in KH Rechinger Flora Iranica, no 61. Graz,

  28. Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38:535–552

    Article  Google Scholar 

  29. Park CW, Oh SH, Shin HC (1993) Reexamination of vascular plants in Ullung Island, Korea 2-Taxonomic identity of Acer takesimense Nakai (Aceraceae). Korean J Plant Taxon 23:217–231

    Article  Google Scholar 

  30. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers

  31. Pojarkova A (1933) Botanico-geographical survey of the maples in USSR, in connection with the history of the whole genus Acer L. Act Inst Bot Acad Sci USSR, ser 1, fasc 1:224-374

  32. Pole M (2010) Cuticle morphology of Australasian Sapindaceae. Bot J Linn Soc 164:264–292

    Article  Google Scholar 

  33. Ramel C (1998) Biodiversity and intraspecific genetic variation. Pure Appl Chem 70:2079–2084

    CAS  Article  Google Scholar 

  34. Royer DL, McElwain JC, Adams JM, Wilf P (2008) Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytol 179:808–817

    Article  Google Scholar 

  35. Royer DL, Meyerson LA, Robertson KM, Adams JM (2009) Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS ONE 4:e7653

    Article  Google Scholar 

  36. Sheidai M, Ziaee S, Farahani F, Talebi S-M, Noormohammadi Z, Farahani Y (2014) Infra-specific genetic and morphological diversity in Linum album (Linaceae). Biologia 69:32–39

    CAS  Article  Google Scholar 

  37. Siahkolaee SN, Sheidai M, Assadi M, Noormohammadi Z (2017) Do we have different varieties in Acer velutinum (Sapindaceae): morphological and molecular studies. Phytotaxa 321:151–165

    Article  Google Scholar 

  38. Suh Y, Heo K, Park C-W (2000) Phylogenetic relationships of maples (Acer L.; Aceraceae) implied by nuclear ribosomal ITS sequences. J Plant Res 113:193–202

    CAS  Article  Google Scholar 

  39. Tanai T (1983) Revisions of tertiary Acer from east Asia. Journal of the Faculty of Science, Hokkaido University Series 4. Geol Miner 20:291–390

    Google Scholar 

  40. van Gelderen DM, De Jong PC, Oterdoom HJ (1994) Maples of the world. Timber Press

  41. Wilf P, Zhang S, Chikkerur S, Little SA, Wing SL, Serre T (2016) Computer vision cracks the leaf code. Proc Natl Acad Sci USA 113:3305–3310

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Saeed Javadi Anaghizi in Central laboratory of the Shahid Beheshti University for providing SEM pictures. Also, we thank Mr. Mansour Pouramini-Nav for help in field collecting.

Author information

Affiliations

Authors

Contributions

Sedigheh Nikzat Siahkolaee, Mostafa Assadi, and Masoud Sheidai conceived and designed the research. Sedigheh Nikzat Siahkolaee and Somayeh Ghasemzadeh Baraki did all the laboratory-related sections and analyzed some of data. Sedigheh Nikzat Siahkolaee provided SEM photographs and wrote the manuscript. Masoud Sheidai analyzed data. All authors read and approved the manuscript.

Corresponding author

Correspondence to Sedigheh Nikzat-Siahkolaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikzat-Siahkolaee, S., Sheidai, M., Assadi, M. et al. Infra-specific variation of Acer cappadocicum (Sapindaceae): morphological and molecular approaches. Braz. J. Bot 44, 149–163 (2021). https://doi.org/10.1007/s40415-020-00692-7

Download citation

Keywords

  • ITS
  • Leaf-morphotype
  • Lower taxa
  • Micromorphology