Skip to main content
Log in

Arbuscular mycorrhizal fungi as biotechnology alternative to increase concentrate of secondary metabolites in Zea mays L.

  • Short Communication
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Leaves of corn (Zea mays L.) produce secondary metabolism compounds characterizing them as an alternative source of animal food. Plants of this species establish mutualistic symbiosis with arbuscular mycorrhizal fungi (AMF) which provide an increase in the contents of bioactive compounds. These compounds have pharmacological properties and are important to the process of healing diseases. The objective of this paper was to establish whether the association of Z. mays with AMF increases the concentration of phenolic compounds in the leaves. After 70 days of growth, corn leaves were collected and their extract used for phytochemical analyses that included: soluble carbohydrates, proteins, phenols, flavonoids, and total tannins. Plants associated with Claroideoglomus etunicatum (W. N. Becker & Gerdemann) C. Walker & A. Schüssler (UFPE 06), Acaulospora longula Spain & N. C. Schenck (UFPE 21) and Dentiscutata heterogama (T.H. Nicolson & Gerd.) Sieverd., F.A. de Souza & Oehl (UFPE 19) presented an increase in the concentration of soluble carbohydrates of 153.7%, 86.6%, and 79.1%, respectively, in relation to the control. Concentration of flavonoids was higher in plants inoculated with A. longula comparing with the control, while the concentrations of phenols, tannins, and total proteins in the mycorrhizal treatments did not differ from the control. Use of mycorrhizal technology may represent an alternative to enhance the content of some foliar metabolites in Z. mays leading to the production of phytomass with greater phytochemical and nutritional qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187

    Article  CAS  PubMed  Google Scholar 

  • Agra MF, Silva KN, Basílio IJLD, Freitas PF, Barbosa-Filho JM (2008) Survey of medicinal plants used in the region Northeast of Brazil. Rev Bras Farmacogn 18:472–508

    Article  Google Scholar 

  • Araújo TAS, Alencar NL, Amorim ELC, Albuquerque UP (2008) A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J Ethnopharmacol 120:72–80

    Article  CAS  Google Scholar 

  • Assistat (2017) Federal University of Campina Grande, Campina Grande, Paraíba, Brazil. http://www.assistat.com. Accessed 17 June 2009

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) Improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brito HO, Noronha EP, França LM, Brito LMO, Prado SA (2008) Análise da composição fitoquímica do extrato etanólico das folhas de Annona squamosa (ATA). Rev Bras Farm 89:180–184

    CAS  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Coelho IR, Pedone-Bonfim MVL, Silva FSB, Maia LC (2014) Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer. Braz J Microbiol 45:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Coppeta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. genovese. Mycorrhiza 16:485–494

    Article  CAS  Google Scholar 

  • Dave S, Tarafdar JC (2011) Stimulatory synthesis of saponin by mycorrhizal fungi in safed musli (Chlorophytum borivilianum) tubers. Int Res J Agric Sci Soil Sci 1:137–141

    Google Scholar 

  • Dubois M, Guiles A, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–355

    Article  CAS  Google Scholar 

  • Eftekhari M, Alizadeh M, Ebrahimi P (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod 38:160–165

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107:241–251

    Article  CAS  Google Scholar 

  • González-Muñoz A, Quesille-Villalobos AM, Fuentealba C, Shetty K, Ranilla LG (2013) Potential of chilean native Corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J Agric Food Chem 61:10995–11007

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and darum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    Article  CAS  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RIMBL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Maioli-Azevedo V, Fonseca-Kruel VS (2007) Plantas medicinais e ritualísticas vendidas em feiras livres no Município do Rio de Janeiro, RJ, Brasil: estudo de caso nas zonas Norte e Sul. Acta Bot Bras 21:263–275

    Article  Google Scholar 

  • Mandal S, Upadhyay S, Wajid S, Ram MJDC, Singh VP, Abdin MZ, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357

    Article  CAS  PubMed  Google Scholar 

  • Monteiro JM, Albuquerque UP, Lins Neto EMF, Araújo EL, Albuquerque MM, Amorim ELC (2006) The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Braz J Pharmacogn 16:338–344

    Article  CAS  Google Scholar 

  • Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. Editora da UFLA, Lavras

    Google Scholar 

  • Moreira RCT, Costa LCB, Costa RCS, Rocha EA (2002) Abordagem etnobotânica acerca do uso de plantas medicinais na Vila Cachoeira, Ilhéus, Bahia, Brasil. Acta Farm Bonaerense 21:205–211

    Google Scholar 

  • Oliveira MS, Campos MAS, Albuquerque UP, Silva FSB (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crop Prod 50:244–247

    Article  CAS  Google Scholar 

  • Oliveira MS, Campos MA, Silva FS (2015) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agricul 95:522–528

    Article  CAS  Google Scholar 

  • Restle J, Neumann M, Brondani IL, Pascoal LL, Silva JHS, Pellegrini LG, Souza ANM (2002) Manipulação da altura de corte da planta de milho (Zea mays L.) para ensilagem visando a produção do novilho superprecoce. Rev Bras Zootec 31:1235–1244

    Article  Google Scholar 

  • Santos RI (2003) Metabolismo básico e origem dos metabólitos secundários. In: Simões CMO, Sebenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (eds), Farmacognosia: da planta ao medicamento. Porto Alegre/Florianópolis, Editora da UFRG/Editora da UFSC, pp 403–434

  • Seifi E, Teymoor YS, Alizadeh M, Fereydooni H (2014) Olive mycorrhization: influences of genotype, mycorrhiza, and growing periods. Sci Hortic 180:214–219

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Silva FA, Silva FSB (2017) Is the application of arbuscular mycorrhizal fungi an alternative to increase foliar phenolic compounds in seedlings of Mimosa tenuiflora (Wild.) Poir., Mimosoideae? Braz J Bot 40:361–365

    Article  Google Scholar 

  • Silva MF, Pescador R, Rebelo RA, Stürmer SL (2008) The effect of arbuscular mycorrhizal solates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20:119–130

    Article  Google Scholar 

  • Silva LG, Martins LMV, Silva FSB (2014a) Arbuscular mycorrhizal symbiosis in the maximization of the concentration of foliar biomolecules in pomegranate (Punica granatum L.) seedlings. J Med Plant Res 8:953–957

    Article  Google Scholar 

  • Silva FA, Silva FSB, Maia LC (2014b) Biotechnical application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. ex Tul.) L.P.Queiroz var. ferrea]. J Med Plants Res 8:814–819

    Article  Google Scholar 

  • Subramanian KS, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolismo of maize under drought stress. Mycorrhiza 5:273–278

    Article  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Vierheilig H, Gagnon H, Strack D, Maier W (2000) Accumulation of cyclohexenone derivatives in barley, wheats and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291–293

    Article  CAS  Google Scholar 

  • Zhang Q-R, Zhu H-H, Zhao H-Q, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolics synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170:74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zuannazzi JAS, Montanha JA (2003) Flavonóides. In: Simões CMO, Sebenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. Porto Alegre/Florianópolis, Editora da UFRG/Editora da UFSC, pp 577–614

    Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hipericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—National Council for Scientific and Technological Development) for providing research fellowships to LC Maia and FSB Silva.

Author information

Authors and Affiliations

Authors

Contributions

FAdaS carried out the evaluation of the experiments and preparation and writing of paper. FSBdaS and LCM contributed to preparation and writing of paper.

Corresponding author

Correspondence to Francineyde A. Silva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.A., Maia, L.C. & Silva, F.S.B. Arbuscular mycorrhizal fungi as biotechnology alternative to increase concentrate of secondary metabolites in Zea mays L.. Braz. J. Bot 42, 189–193 (2019). https://doi.org/10.1007/s40415-018-0508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-018-0508-2

Keywords

Navigation