Skip to main content

Advertisement

Log in

Transferability of nuclear microsatellite markers to the atmospheric bromeliads Tillandsia recurvata and T. aeranthos (Bromeliaceae)

  • Short Communication
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The genus Tillandsia L. is the most diversified genus of Bromeliaceae and represents one of the most specialized cases of vascular epiphytism: the ‘atmospheric bromeliads.’ Such great diversity and ecological specialization make it an interesting model for evolutionary and population genetics studies. Here we report the cross-transferability of SSR markers isolated from other bromeliad species to Tillandsia recurvata (L.) L. and T. aeranthos (Loisel.) Desf., epiphytes with great abundance in both natural and anthropogenic-modified environments, but with contrasting patterns of geographic distribution and mating systems. We tested a total of 27 microsatellite markers and successfully amplified seven polymorphic markers in T. recurvata and T. aeranthos . We then described cross-amplified markers in two populations per species, sampled in both anthropogenic-transformed and natural environments. T. recurvata presented lower allelic richness and heterozygosities, and greater inbreeding coefficient values. Such differences clearly reflect their contrasting mating systems (self-fertilizing in T. recurvata versus self-incompatible in T. aeranthus). The set of cross-amplified microsatellite markers described here will be a helpful tool to address a range of evolutionary and ecological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amos W, Hoffman JI, Frodsham A et al (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14

    Article  CAS  Google Scholar 

  • Aoki-Gonçalves F, Louzada RBRRB, De SL et al (2014) Microsatellite loci for Orthophytum ophiuroides (Bromelioideae, Bromeliaceae) species adapted to neotropical rock outcrops. Appl Plant Sci 2:1–4

    Article  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–349

    Google Scholar 

  • Barbará T, Palma-Silva C, Paggi GM et al (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (2012) Air plants: epiphytes and aerial gardens. Cornell University Press, New York

    Google Scholar 

  • Bianchi MB, Vesprini JL (2014) Contrasting breeding systems in six species of Tillandsia L. (Bromeliaceae) from woody areas of Santa Fe Province: Argentina. Plant Biosyst Int J Deal Asp Plant Biol 148:956–964

    Google Scholar 

  • Boneh L, Kuperus P, Van Tienderen PH (2003) Microsatellites in the bromeliads Tillandsia fasciculata and Guzmania monostachya. Mol Ecol Notes 3:302–303

    Article  CAS  Google Scholar 

  • Caldiz DO, Beltrano J, Fernández LV, Andía I (1993) Survey of Tillandsia recurvata L.: preference, abundance and its significance for natural forests. For Ecol Manage 57:161–168

    Article  Google Scholar 

  • Cascante-Marín A, Wolf JHD, Oostermeijer JGB et al (2006) Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic Appl Ecol 7:520–532

    Article  Google Scholar 

  • Cascante-Marín A, Oostermeijer G, Wolf J et al (2014) Genetic diversity and spatial genetic structure of an epiphytic bromeliad in costa rican montane secondary forest patches. Biotropica 46:425–432

    Article  Google Scholar 

  • Castello LV, Barfuss MHJ, Till W et al (2016) Disentangling the Tillandsia capillaris complex: phylogenetic relationships and taxon boundaries in Andean populations. Bot J Linn Soc 181:391–414

    Article  Google Scholar 

  • de Miranda FD, Gontijo ABPL, Santiliano FC et al (2012) Transferability and characterization of microsatellite markers in five Bromeliaceae species belonging to the subfamilies Pitcairnioideae and Bromelioideae. Biot Neotrop 12:319–323

    Article  Google Scholar 

  • Einzmann HJR, Beyschlag J, Hofhansl F et al (2015) Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants 7:1–16

    Article  Google Scholar 

  • Ferreira DMC, Neri J, Palma-Silva C et al (2017) Cross-amplification of nuclear microsatellite markers in two species of Cryptanthus Otto & A. Dietr. (Bromeliaceae). Rev Bras Bot 40:475–480

    Article  Google Scholar 

  • Goetze MM, Louzada RB, Wanderley MGL et al (2013) Development of microsatellite markers for genetic diversity analysis of Aechmea caudata (Bromeliaceae) and cross-species amplification in other bromeliads. Biochem Syst Ecol 48:194–198

    Article  CAS  Google Scholar 

  • Goudet J, Jombart T (2015) hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.04-22. https://CRAN.R-project.org/package=hierfstat. Accessed 1 Nov 2017

  • Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59:1–129

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Luther HE (2012) An alphabetical list of bromeliad binomials. Marie Selby Botanical Gardens and Bromeliad Society International, Maddison

    Google Scholar 

  • Martin CE, Eades CA, Pitner RA (1986) Effects of irradiance on crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. (Bromeliaceae). Plant Physiol 80:23–26

    Article  CAS  Google Scholar 

  • Neri J, Nazareno AG, Wendt T, Palma-Silva C (2015) Development and characterization of microsatellite markers for Vriesea simplex (Bromeliaceae) and cross-amplification in other species of Bromeliaceae. Biochem Syst Ecol 58:34–37

    Article  CAS  Google Scholar 

  • Orozco-Ibarrola OA, Flores-Hernández PS, Victoriano-Romero E et al (2015) Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)? Bot J Linn Soc 177:50–65

    Article  Google Scholar 

  • Paggi GM, Palma-Silva C, Bered F et al (2008) Isolation and characterization of microsatellite loci in Pitcairnia albiflos (Bromeliaceae), an endemic bromeliad from the Atlantic Rainforest, and cross-amplification in other species. Mol Ecol Resour 8:980–982

    Article  CAS  Google Scholar 

  • Palma-Silva C, Cavallari MM, Barbará T et al (2007) A set of polymorphic microsatellite loci for Vriesea gigantea and Alcantarea imperialis (Bromeliaceae) and cross-amplification in other bromeliad species. Mol Ecol Notes 7:654–657

    Article  CAS  Google Scholar 

  • Pittendrigh CS (1948) The Bromeliad–Anopheles–Malaria complex in Trinidad. I-The Bromeliad Flora. Evolution 2:58–89

    CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Doyle JJ et al (1996) Genepool variation in genus Glycine subgenus soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144:793–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2). J Hered 86:248–249

    Article  Google Scholar 

  • Reyes-García C, Mejia-Chang M, Jones GD, Griffiths H (2008) Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals. Plant Cell Environ 31:828–841

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Soltis DE, Gilmartin AJ, Rieseberg L, Gardner S (1987) Genetic variation in the epiphytes Tillandsia ionantha and T. recurvata (Bromeliaceae). Am J Bot 74:531–537

    Article  CAS  Google Scholar 

  • Tel-Zur N, Abbo S, Myslabodsky D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17:249–254

    Article  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  Google Scholar 

  • Wester S, Zotz G (2010) Growth and survival of Tillandsia flexuosa on electrical cables in Panama. J Trop Ecol 26:123–126

    Article  Google Scholar 

  • Wester S, Zotz G (2011) Seed comas of bromeliads promote germination and early seedling growth by wick-like water uptake. J Trop Ecol 27:115–119

    Article  Google Scholar 

  • Wöhrmann T, Weising K (2011) In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theor Appl Genet 123:635–647

    Article  Google Scholar 

  • Wöhrmann T, Wagner N, Krapp F et al (2012) Development of microsatellite markers in Fosterella rusbyi (Bromeliaceae) using 454 pyrosequencing. Am J Bot 99:160–163

    Article  Google Scholar 

  • Zanella CM, Janke A, Paggi GM et al (2012) Microsatellites in the endangered species Dyckia distachya (Bromeliaceae) and cross-amplification in other bromeliads. Int J Mol Sci 13:15859–15866

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2014/15588-6, 2014/08087-0, 2016/04396-4, 2016/03777-4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 471756/2013-0).

Author information

Authors and Affiliations

Authors

Contributions

CP-S designed the study. CJNC and FA-G performed the experiments and analyzed the data. CJNC, FA-G, and BSSL wrote the manuscript. DRR and CP-S reviewed the manuscript.

Corresponding author

Correspondence to Clarisse Palma-Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, C.J.N., Aoki-Gonçalves, F., Leal, B.S.S. et al. Transferability of nuclear microsatellite markers to the atmospheric bromeliads Tillandsia recurvata and T. aeranthos (Bromeliaceae). Braz. J. Bot 41, 931–935 (2018). https://doi.org/10.1007/s40415-018-0494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-018-0494-4

Keywords

Navigation