Skip to main content
Log in

Transferability of microsatellite markers in four species of Masdevallia (Orchidaceae, Pleurothallidinae) endemic to mountain cloud forests of the Bolivian Andes: a phylogenetic approach

  • SHORT COMMUNICATION
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Cross-amplification and transferability of ten microsatellite loci previously developed for Masdevallia solomonii Luer & R.Vasquéz were assessed in M. chaparensis T. Hashim, M. exquisita Luer & Hirtz, M. scandens Rolfe and M. yungasensis Hashimoto. The transferability rates and a phylogenetic analysis are presented here to show potential application for these markers. Cross-amplification was fully successful (100 %) in closely related species (M. yungasensis and M. chaparensis) and highly successful in M. exquisita and M. scandens (90 %). Average allele number/effective allele was 9.3/6.0 in M. chaparensis, 9.4/5.7 in M. exquisita, 5.8/3.2 in M. scandens and 6.2/3.9 in M. yungasensis. Deviations from Hardy–Weinberg equilibrium were observed in seven loci in M. chaparensis, five loci in M. exquisita, one locus in M. scandens, and two loci in M. yungasensis. The high transferability rates obtained indicate high potential for comparative population genetic studies in these species of great interest for conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  PubMed  Google Scholar 

  • Desfeux CS, Lejeune B (1996) Systematics of Euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS. Life Sci 319:351–358

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • IUCN (1997) Red list of threatened plants (Edited by K.S. Walter and H.J. Gillett). IUCN, Gland

  • IUCN/SSC Orchid Specialist Group (1996) Orchids status survey and conservation action plan. IUCN, Cambridge

    Google Scholar 

  • López-Roberts MC, Almeida PRM, Oliveira EJF, van den Berg C (2012) Microsatellite marker development for the threatened orchid Masdevallia solomonii (Orchidaceae). Am J Bot 99:66–68

    Article  Google Scholar 

  • Luer CA (2003) Icones Pleurothallidinarum XXV: systematics of Masdevallia part five. Monogr Syst Bot MO Bot Gard 91:1–282

    Google Scholar 

  • Mamani SB (2013) Germinación asimbiótica en Masdevallia solomonii a partir de semillas con diferentes tratamientos de polinización. Dissertation, Universidad Mayor de San Andrés, La Paz

  • Meneses R, Beck S (2005) Especies Amenazadas de la Flora de Bolivia. Herbario Nacional de Bolivia, La Paz

    Google Scholar 

  • Nylander JAA (2008). MrModeltest v 2.3 program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Oliveira E, Gomes J, Zucchi M, Vencovsky R, Carneiro M (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro F (2009) Estrutura genética de zonas de hibridação natural entre Epidendrum fulgens e E. puniceoluteum (Orchidaceae). Dissertation, Universidade de, São Paulo

  • Pinheiro F, Palma-Silva C, Barros F, Cozzolino C (2009) Cross- amplification and characterization of microsatellite loci for the neotropical orchid genus Epidendrum. Genet Mol Biol 32:337–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across large model space. Syst Biol 61:539–542

  • Staden R, Beal K, Bonfield J (1999) The Staden Package, 1998. In: Bioinformatics methods and protocols. Methods in molecular biology, vol 132. Springer, Heidelberg, pp 115–130

  • Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony (and other methods) v.4.0. Sinauer Associates, Sunderland

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vásquez R, Ibisch P (2000) Orquídeas de Bolivia: Subtribo Pleurothallidinae, vol 1. FAN, Santa Cruz

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgments

We thank Paulo Ricardo M. Almeida for support in laboratory, Gabriela Villegas Alvarado, Beatriz Mamani Sánchez, Iván Jimenez Pérez and Saul Altamirano, for support in the field. Special thanks to Jorge Quezada Portugal of IBMB and the staff of LPB for logistic support. We thank Lucas Marinho Cardoso for helping us in figure edition. This work was funded by PRONEX (FAPESB/CNPq, Grant PNX0014/20090), the Productivity Scholarship from CNPq (PQ-1B) to C.v.d.B. and a scholarship from CNPq (PEC-PG 190107/09-0) to M.C.L.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cristina Lopez-Roberts.

Appendix

Appendix

Taxon; Voucher specimen, collection locale; Herbarium. Number of Genbank accession.

Masdevallia exquisita Luer & Hirtz JI4315, PN-ANMI Cotapata, Nor Yungas Bolivia; LPB. Genbank accession: KF479479.

Masdevallia scandens Rolfe JI5743, PN-ANMI Cotapata, Nor Yungas Bolivia; LPB. Genbank accession: KF479476.

Masdevallia solomonii Luer & Vasquez JI3742, PN-ANMI Cotapata, Nor Yungas Bolivia; LPB. Genbank accession: KF479477.

Masdevallia yungasensis Hashimoto subp. yungasensis JI3690, PN-ANMI Cotapata, Nor Yungas Bolivia; LPB. Genbank accession: KF479478.

Since Masdevallia chaparensis is a threatened species, we did not collect voucher specimen for the genotyped population. For phylogenetic analyses, we obtained the ITS sequences of M. chaparensis and Trisetella triglochin from GenBank (AF262797.1 and AF262807.1, respectively).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Roberts, M.C., van den Berg, C. Transferability of microsatellite markers in four species of Masdevallia (Orchidaceae, Pleurothallidinae) endemic to mountain cloud forests of the Bolivian Andes: a phylogenetic approach. Braz. J. Bot 39, 943–948 (2016). https://doi.org/10.1007/s40415-016-0264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0264-0

Keywords

Navigation