Evaluation of the cytotoxicity of contemporary glass-ionomer cements on mouse fibroblasts and human dental pulp cells

Abstract

Purpose

This study aimed to evaluate the cytotoxic effects of different types of contemporary GICs on human dental pulp cell (hDPCs) and mouse fibroblast (L929) cultures.

Methods

Three high-viscosity GICs (HVGIC; GC Equia Forte, Riva Self Cure, IonoStar Plus), three resin-modified GICs (RMGIC; Photac Fil, Riva Light Cure, Ionolux), and a metal-reinforced GIC (MRGIC; Riva Silver) were investigated. Twelve disc-shaped specimens of each material were prepared and stored in Dulbecco’s modified Eagle medium (DMEM). L929 fibroblasts and DPCs were then cultured in 96-well plates. Uncultured DMEM was used as a negative control. Mitochondrial dehydrogenase activity (MTT) assays were performed to detect cell viability after 24, 48, and 72 h. Data were analysed using Mann–Whitney U and Friedman tests followed by a Bonferroni-corrected Wilcoxon signed rank test, with the statistical significance set at P < 0.05.

Results

Toxicity levels varied between the cell-culture systems. MTT assays of L929 cells showed significant differences in percentages of viable cells, as follows: Riva Self Cure = Riva Silver > GC Equia Forte > IonoStar Plus = Riva Light Cure = Photac Fil > Ionolux. MTT assays of DPCs showed the percentages of viable cells to be significantly lower for the Ionolux group when compared to the other GICs, which did not differ significantly from one another. With the exception of Ionolux, none of the other GICs tested showed any toxicity, and in fact, they all induced cell proliferation (> 100% cell viability).

Conclusions

Although the degree of toxicity varied between the two cell-culture systems investigated, all the GICs tested, with the exception of Ionolux, performed favorably with regard to cytotoxicity (> 100% cell viability in both cell systems).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahmed HM, Omar NS, Luddin N, Saini R, Saini D. Cytotoxicity evaluation of a new fast set highly viscous conventional glass ionomer cement with L929 fibroblast cell line. J Conserv Dent. 2011;14:406–8.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Aranha AMF, Giro EMA, Souza PPC, Hebling J, de Souza Costa CA. Effect of curing regime on the cytotoxicity of resin-modified glass-ionomer lining cements applied to an odontoblast-cell line. Dent Mater. 2006;22:864–9.

    PubMed  Article  Google Scholar 

  3. Arndt V. Completing a direct posterior restoration using Ionofil Molar AC Quick immediately packable glass ionomer. In: Dental Product Report. 2002. http://www.highbeam.com/doc/1P3-260753781.html. Accessed Dec 2002.

  4. Chang HH, Guo MK, Kasten FH, et al. Stimulation of glutathione depletion ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials. 2005;26:745–53.

    PubMed  Article  Google Scholar 

  5. Costa CA, Vaerten MA, Edwards CA, Hanks CT. Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater. 1999;15:434–41.

    PubMed  Article  Google Scholar 

  6. Costa CA, Hebling J, Hanks CT. Current status of pulp therapy with dentin adhesive systems. A review. Dent Mater. 2000;16:188–97.

    PubMed  Article  Google Scholar 

  7. Costa CAS, Giro EM, do Nascimento AB, Teixeira HM, Hebling J. Short-term evaluation of the pulp-dentin complex response to a resin-modified glass-ionomer cement and a bonding agent applied in deep cavities. Dent Mater. 2003;19:739–46.

    PubMed  Article  Google Scholar 

  8. Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14:3–9.

    PubMed  Article  Google Scholar 

  9. De Souza Costa CA, Hebling J, Garcia-Godoy F, Hanks CT. In vitro cytotoxicity of five glass-ionomer cements. Biomaterials. 2003;24:3853–8.

    PubMed  Article  Google Scholar 

  10. Gaintantzopoulou MD, Willis GP, Kafrawy AH. Pulp reactions to light-cured glass ionomer cements. Am J Dent. 1994;7:39–42.

    PubMed  Google Scholar 

  11. Gao W, Smales RJ. Fluoride release/uptake of conventional and resin-modified glass ionomer cement and compomer. J Dent. 2001;29:301–6.

    PubMed  Article  Google Scholar 

  12. Geurtsen W, Lehmann F, Spahl W, Leyhausen G. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res. 1998;41:474–80.

    PubMed  Article  Google Scholar 

  13. Geursten W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med. 2000;11:333–55.

    Article  Google Scholar 

  14. Hanks CT, Anderson M, Craig RG. Cytotoxic effects of dental cements on two cell culture systems. J Oral Pathol. 1981;10:101–12.

    PubMed  Article  Google Scholar 

  15. Hensten-Pettersen A, Helgeland K. Sensitivity of different human cell line in the biologic evaluation of dental resin-based restorative materials. Scand J Dent Res. 1981;89:102–7.

    PubMed  Google Scholar 

  16. Hotz P, McLean JW, Sced I, Wilson AD. The bonding of glass-ionomer cements to metal and tooth substrates. Br Dent J. 1977;142:41–7.

    PubMed  Article  Google Scholar 

  17. Huang FM, Chang YC. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:361–5.

    PubMed  Article  Google Scholar 

  18. Kılıç Süloğlu A, Selmanoğlu G, Yılmaz Ş, Canpınar H. Comparison of phototoxic effects of hypericin-mediated photodynamic therapy in HT-29 and Caco-2 colon cancer cells. Turk J Biol. 2016;40:1202–18.

    Article  Google Scholar 

  19. Lan WH, Lan WC, Wang TM, et al. Cytotoxicity of conventional and modified glass ionomer cements. Oper Dent. 2003;28:251–9.

    PubMed  Google Scholar 

  20. Li F, Weir MD, Chen J, Xu HH. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent Mater. 2013;29:450–61.

    PubMed  PubMed Central  Article  Google Scholar 

  21. Lutfi AN, Kannan TP, Fazliah MN, Jamaruddin MA, Saidi J. Proliferative activity of cells from remaining dental pulp in response to treatment with dental materials. Aust Dent J. 2010;55:79–85.

    PubMed  Article  Google Scholar 

  22. Marczuk-Kolada G, Luczaj-Cepowicz E, Pawinska M, Holownia A. Evaluation of the cytotoxicity of selected conventional glass ionomer cements on human gingival fibroblasts. Adv Clin Exp Med. 2017;26:1041–5.

    PubMed  Article  Google Scholar 

  23. Mickenautsch S, Mount G, Yengopal V. Therapeutic effect of glass ionomers: an overview of evidence. Austr Dent J. 2011;56:10–5.

    Article  Google Scholar 

  24. Moharamzadeh K, Van Noort R, Brook IM, Scutt AM. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent Mater. 2007;23:40–4.

    PubMed  Article  Google Scholar 

  25. Mount GJ. Clinical performance of glass-ionomers. Biomaterials. 1998;19:573–9.

    PubMed  Article  Google Scholar 

  26. Mozayeni MA, Milani AS, Marvasti LA, Asgary S. Cytotoxicity of calcium enriched mixture cement compared with mineral trioxide aggregate and intermediate restorative material. Aust Endod J. 2012;38:70–5.

    PubMed  Article  Google Scholar 

  27. Murray PE, Garcia Godoy C, Garcia Godoy F. How is the biocompatibility of dental biomaterials evaluated? Med Oral Patol Oral Cir Bucal. 2007;12:E258–66.

    PubMed  Google Scholar 

  28. Nicholson JW, Czarnecka B. The biocompability of resin-modified glass ionomer cements for dentistry. Dent Mater. 2008;24:1702–8.

    PubMed  Article  Google Scholar 

  29. Palmer G, Anstice HM, Pearson GJ. The effect of curing regime on the release of hydroxyethyl methacrylate (HEMA) from resin-modified glass ionomer cements. J Dent. 1999;27:303–11.

    PubMed  Article  Google Scholar 

  30. Park MV, Neigh AM, Vermeulen JP, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nano-particles. Biomaterials. 2011;32:9810–7.

    PubMed  Article  Google Scholar 

  31. Rimondini L, Mele S. Stem cell technologies for tissue regeneration in dentistry. Minerva Stomatol. 2009;58:483–500.

    PubMed  Google Scholar 

  32. Schmalz G. Concepts in biocompatibility testing of dental restorative materials. Clin Oral Invest. 1997;1:154–62.

    Article  Google Scholar 

  33. Schmid-Schwap M, Franz A, König F, et al. Cytotoxicity of four categories of dental cements. Dent Mater. 2009;25:360–8.

    PubMed  Article  Google Scholar 

  34. Sidhu SK. Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J. 2011;56:23–30.

    PubMed  Article  Google Scholar 

  35. Stanislawski L, Daniau X, Lauti A, Goldberg M. Factors responsible for pulp cell cytotoxicity induced by resin-modified glass-ionomer cements. J Biomed Mater Res. 1999;48:277–88.

    PubMed  Article  Google Scholar 

  36. Taira M, Nakao H, Matsumoto T, Takahashi J. Cytotoxic effect of methyl methacrylate on 4 cultured fibroblasts. Int J Prosthodont. 2000;13:311–5.

    PubMed  Google Scholar 

  37. Tarim B, Hafez AA, Cox CF. Pulpal response to a resin-modified glass-ionomer material on nonexposed and exposed monkey pulps. Quint Int. 1998;29:535–42.

    Google Scholar 

  38. Xie D, Brantley BM, Culbertson G, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16:129–38.

    PubMed  Article  Google Scholar 

  39. van Duinen RN, Kleverlaan CJ, de Gee AJ, Werner A, Feilzer AJ. Early and long-term wear of “fast-set” conventional glass-ionomer cements. Dent Mater. 2005;21:716–20.

    PubMed  Article  Google Scholar 

  40. Vega-Avila E, Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc. 2011;54:10–4.

    PubMed  Google Scholar 

  41. Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43:255–63.

    PubMed  Article  Google Scholar 

  42. Yap AU, Pek YS, Cheang P. Physico-mechanical properties of a fast-set highly viscous GIC restorative. J Oral Rehabil. 2003;30:1–8.

    PubMed  Article  Google Scholar 

  43. Zhang K, Cheng L, Imazato S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41:464–74.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ersahan.

Ethics declarations

Conflict of interest

The authors affirm that they do not presently have, nor have they had in the past, any direct financial interest in the subject or materials discussed in this manuscript, or any affiliation with any commercial organisation with any such financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ersahan, S., Oktay, E.A., Sabuncuoglu, F.A. et al. Evaluation of the cytotoxicity of contemporary glass-ionomer cements on mouse fibroblasts and human dental pulp cells. Eur Arch Paediatr Dent 21, 321–328 (2020). https://doi.org/10.1007/s40368-019-00481-1

Download citation

Keywords

  • Glass-ionomer cement
  • Dental pulp cells
  • Fibroblasts
  • MTT assay
  • Cell viability
  • Cytotoxicity