MTZ industrial

, Volume 8, Issue 1, pp 42–47 | Cite as

Combustion Development Methodology for Non-natural Gas Applications

  • Eduard Schneßl
  • Andreas Wimmer
  • Stefan Prankl
Development Methods | Processes

Implementation of tailor-made solutions for non-natural gas applications requires an efficient development methodology. The Large Engines Competence Center (LEC) has developed such a methodology, the result of many years of research in combination with successful projects that apply customized non-natural gas combustion concepts. The key to developing this special methodology was the derivation of a selection catalog based on these experiences and the combined use of simulation tools and test programs specifically designed for this task. With the methodology, a newly developed combustion concept can be directly implemented on the production engine. Costly investigations at the engine manufacturer’s test facilities or on-site tests are not required.

Non-Natural Gases for Combined Heat and Power Generation

On a global level, there is an enormous potential for economically and ecologically viable implementation of Non-Natural Gases (NNG) applications into large gas engines. In the...


  1. [1]
    Farina, M.F.: Flare Gas Reduction — Recent global trends and policy considerations. GE White Paper,, 2010Google Scholar
  2. [2]
    Zelenka, J.; Kammel, G.; Pichikala, K.C.; Tritthart, W.: The Quality of Gaseous Fuels and Consequences for Gas Engines. 10. Internationale Energiewirtschaftstagung an der TU Wien (IEWT), Austria, 2017Google Scholar
  3. [3]
  4. [4]
    Pirker, G.; Schnessl, E.; Sauperl, I.; Wimmer, A.: LDM Compact — a highly efficient method for developing gas engines for use with low environmental impact non-natural gas. SEEP 2017 — 10th International Conference on Sustainable Energy & Environmental Protection, 2017Google Scholar
  5. [5]
    Dimitrov D.; Strasser Ch.; Chmela F.; Wimmer A.: Vorhersage des Klopfverhaltens für Groß-Gasmotoren mit Direktzündung oder Vorkammer. 2. Tagung Klopfregelung für Ottomotoren — Trends für Serienentwickler, Germany, 2006Google Scholar
  6. [6]
    Wimmer, A.; Chmela, F.; Kirsten, M.; Pirker, G.; Christiner, P.; Trapp, C.; Schaumberger, H.: LEC-GPN — a new index for assessing the knock behavior of gaseous fuels for large engines. Knocking in Gasoline Engines, proceedings, pp. 239–254, Germany, 2013Google Scholar
  7. [7]
    Schnessl, E.; Pirker, G.; їmmer, A.: Optimierung von Brennverfahren für Sondergasanwendungen auf Basis Simulation und Versuch am Einzylinder-Forschungsmotor. 4th International MTZ Conference On-/Off-Highway Engines, Friedrichshafen, Germany, 2009Google Scholar
  8. [8]
    Schnessl, E.; Kogler, G.; Wimmer, A.: Großgasmotorenkonzepte für Gase mit extrem niedrigem Heizwert. 6th Dessau Gas Engine Conference, Germany, 2009Google Scholar
  9. [9]
    Zauner, S.; Arnold, G.; Kopecek, H.; Kumar, C.; Spreitzer, C.; Trapp, C.; Schneßl, E.; Wimmer, A.: Nutzung von Gichtgas im Großgasmotor mit Hilfe zylinderdruckbasierter Motorregelung und Zweigasbetrieb. 3. Rostocker Großmotorentagung, Germany, 2014Google Scholar
  10. [10]
  11. [11]
    Prankl, S.; Trapp, C.; Böwing, R.; Zuschnig, A.; Schiestl, S.; Schneßl, E.; Wimmer, A.: Fortschritte bei Sondergasen — GE Gasmotoren mit hoher Leistung für wasserstoff- und kohlenmonoxidreiche Gase. 4. Rostocker Großmotorentagung, Germany, 2014Google Scholar
  12. [12]
    Schnessl, E.; Wimmer, A.; Zelenka, J.; Kirsten, M.; Kammel, G.: Potential of Using Flare Gases in CHP Applications. International Conference & Workshop REMOO, Italy, 2017Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Eduard Schneßl
    • 1
  • Andreas Wimmer
    • 1
  • Stefan Prankl
    • 2
  1. 1.Large Engines Competence Center (LEC)GrazAustria
  2. 2.GE Distributed PowerJenbachAustria

Personalised recommendations