Skip to main content
Log in

Determining Catalytic Fines Concentrations in Heavy Fuel Oils

  • Research
  • Fuels
  • Published:
MTZ industrial

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

References

  1. Leffler, W. L.: Petroleum Refining in NonTechnical Language. PennWell Corporation, Oklahoma. 3rd edition, 2000

    Google Scholar 

  2. Det Norske Veritas AS (DNV): Engine worn out in less than 100 hours by catalytic fines. Online https://exchange.dnv.com/CasualtyInformation/Documents/Download/53, 2010, accessed 28 January 2016.

    Google Scholar 

  3. Thornton, R.H.; Casale, P.G.; Davidson, D.; Graham, M.: Marine Fuels and International Standards. In Marine Fuels, ASTM, Philadelphia, 1985

    Google Scholar 

  4. Notes on Heavy Fuel Oil, American Bureau of Shipping, Houston, 1984

  5. InSu, H.; Riggs, J.B.; ChangBock, C.: Modeling and optimization of a fluidized catalytic cracking process under full and partial combustion modes. Chemical Engineering and Processing, 2004, 43, 1063

    Article  Google Scholar 

  6. Tveit, O.: Marpol Annex VI — Solving the low sulphur issue, 184. Gard AS, Arendal, Norway, 2000

    Google Scholar 

  7. Kokarakis, J. E.; Kokarakis, E. J.; Apostolidis, A.: Challenges Associated with the Use of Low Sulphur Fuels. SNAME Technical Paper, 2013.

    Google Scholar 

  8. Halle, D. O.; Stroem, A.; High catalyst fines levels found in low sulphur fuel, Lloyd’s List, London, 2008

    Google Scholar 

  9. Sherzer, J.: OctaneEnhancing Zeolite FCC Catalysts: Scientific and Technical Aspects. Marcel Dekker Inc., New York, 1990

    Google Scholar 

  10. Buchanan, J. S.; Santiesteban, J. G.; Haag, W. O.; Catal, J.; Mechanistic consderations in acidcatalyzed cracking of olefines. 1996, 158, 279

  11. Boerefijn, R.; Gudde, N.J.; Ghadiri, M.: A review of attrition of fluid cracking catalyst particles. In: Advanced Powder Technology, 2000, 11, 145

  12. Htay, M. M.; Oo, M. M.; Proceedings of the World Academy of Science: Engineering and Technology, 2008, 48, 8

    Google Scholar 

  13. Hattori, H.; Ono, Y.: Solid Acid Catalysis. Pan Stanford Publishing, Boca Raton, 2015

    Book  Google Scholar 

  14. Ford, M. C.: A Master’s Guide to: Using Fuel Oil Onboard Ships. Charles Taylor & Co. Ltd., London, 2012

    Google Scholar 

  15. ISO 8217:2012. Specifications of Marine Fuels. International Organization for Standardization, Geneva, 2012

    Google Scholar 

  16. Bejger, A.; Drzewieniecki, J: Zesz. Nauk. Akad. Morsk. Szczecinie, 2015, 4, 9

    Google Scholar 

  17. Rolsted, H.; Charlotte, R.; Ole, J.; Mats, E.: Onboard fuel oil cleaning. CIMAC Congress 2013 PAPER 51, 2013

    Google Scholar 

  18. Boutsikas, A.: MSc Dissertation, Massachusetts Institute of Technology, 2004

    Google Scholar 

  19. McMahon, L.: Operators to be told to take responsibility for cat fines damage. In: Lloyd’s List, London, 2013

    Google Scholar 

  20. ASTM D518412. Standard Test Methods for Determination of Aluminum and Silicon in Fuel Oils by Ashing, Fusion, Inductively Coupled Plasma Atomic Emission Spectrometry, and Atomic Absorption Spectrometry, ASTM International, West Conshohocken, PA, 2012, www.astm.org

    Google Scholar 

  21. IP501. Determination of aluminium, silicon, vanadium, nickel, iron, sodium, calcium, zinc and phosphorous in residual fuel oil by ashing, fusion and inductively coupled plasma emission spectrometry, Energy Institute, London, 2005

    Google Scholar 

  22. ISO 10478:1994, Determination of aluminium and silicon in fuel oils Inductively coupled plasma emission and atomic absorption spectroscopy methods, Geneva, 2012

    Google Scholar 

  23. Noria Corporation: Elemental Analysis. Practicing Oil Analysis Magazine, January 2002

    Google Scholar 

  24. Moioli, P.; Seccaroni, C.: Analysis of art objects using a portable xray fluorescence spectrometer. In XRay Spectrometry, 2000, 29, 48

    Article  Google Scholar 

  25. Thermo Fisher Scientific: Easy Elemental Analysis of Heavy Fuel Oils Using Wavelength Dispersive Xray Fluorescence. Analytical Instrumentation, June 2010, 26

    Google Scholar 

  26. Maersk Fluid Technology: Advantages of using the SEAMate Elemental Analyzer. Online http://www.maerskfluid.com/index.php/advantagesanalyzer, 2016. Accessed 29 January 2016

    Google Scholar 

  27. Sørensen, M. K.; Vinding, M. S.; Bakharev, O. N.: Nesgaard, T.; Jensen, O.; Nielsen, N.C.: NMR sensor for onboard ship detection of catalytic fines in marine fuel oils. In: Analytical Chemistry, 2014, 86, 7205

    Article  Google Scholar 

  28. Schramm, J.; Henningsen, S; Sorenson, S.: Modelling of Corrosion of Cylinder Liner in Diesel Engines Caused by Sulphur in the Diesel Fuel. In: SAE Technical Paper 940818, 1994, doi:10.4271/940818

    Google Scholar 

  29. Coant, P.M.; Davison, A.; Fluyt, D.; Kohout, F.C.: Development of antiwear cylinder oil for high output crosshead diesels. In: CIMAC Congress Proceedings, Tokyo, 197

  30. Parker Kittiwake: LinerSCAN — A New Era in Assets Protection, Online http://www.kittiwake.com/sites/default/files/MAK27243KW%20LinerSCAN%20Brochure%20Single%20Pages.pdf, 2016. Accessed 29 January 2016

    Google Scholar 

  31. GB Patent Application GB1515921.3, 2015

  32. Greensfelder, B. S.; Voge, H.H.; Good, G.M.: Catalytic and Thermal Cracking of Pure Hydrocarbons. In: Industrial and Engineering Chemistry, 1949, 41, 2573

    Article  Google Scholar 

  33. Roussel, J. C.; Boulet, R.: Crude Oil Petroleum Products Process Flowsheets, Ed. J. P. Wauquier, Editions Technip, Paris, 1994, ch.1, p1.

    Google Scholar 

  34. US Patent, 7, 7244,364 B1, 2007

  35. Pereira, J. C.; DelgadoLinares, J.; Scorzza, C.; Rondon, M.; Rodriguez, S.; Salager, J. L.: Breaking of WaterinCrude Oil Emulsions. 4. In: Energy & Fuels, 2011, 25, 1045

    Article  Google Scholar 

  36. C. M. Technologies, Shipbuilding Industry, 2015, 9, 37

    Google Scholar 

  37. ASTM D179611e1. Standard Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure), ASTM International, West Conshohocken, PA, 2011, www.astm.org

    Google Scholar 

  38. Stanhope Seta, Seta Oil Test Centrifuge, Online http://www.stanhopeseta.co.uk/product.asp?ID=4807&bShowDetail=true. Accessed 1 February 2016

    Google Scholar 

  39. Zendehdel, M.; Kalateh, Z.; Alikhani, H.; Efficiency Evaluation of NaY Zeolite and TiO2/NaY Zeolite in Removal of Methylene Blue Dye from Aqueous Solutions. In: Iranian Journal of Environmental Health Science and Engineering 2011, 8, 265

    Google Scholar 

  40. Geçgel, Ü.; Özcan, G.; Gürpınar, G. Ç.: Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells. In: Journal of Chemistry, 2013, DOI:10.1155/2013/614083

    Google Scholar 

  41. Cook, A. G.; Tolliver, R. M.; Williams, J.E.: The Blue Bottle Experiment Revisited. In: Journal of Chemical Education 1994, 71 (2), p 160

    Article  Google Scholar 

  42. Singhal, G.S.; Rabinowitch, E.; Changes in the absorption spectrum of methylene blue with pH. In Journal of Physical Chemistry, 1967, 71, 3347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, D. Determining Catalytic Fines Concentrations in Heavy Fuel Oils. MTZ ind 7, 50–57 (2017). https://doi.org/10.1007/s40353-017-0003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40353-017-0003-4

Keywords

Navigation