Skip to main content

Advertisement

Log in

TSPO imaging in stroke: from animal models to human subjects

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Stroke is a major health problem in developed countries and neuroinflammation has emerged over the last 2 decades as major contributor to the pathophysiological processes of brain damage following stroke. PET imaging of the translocator 18 kDa protein (TSPO) provides a unique non-invasive point of access to neuroinflammatory processes and more specifically microglial and astrocytic reaction after stroke in both animal models and patients. Here, we are reviewing both the experimental and clinical literature about in vivo TSPO PET and SPECT imaging in stroke. The studies in animal models of stroke reviewed here highlight a slightly faster time-course for TSPO expression in permanent vs. temporary stroke and a stronger activation in the infarct core in temporary stroke vs. a stronger activation in peri-infarct areas in permanent stroke. Altogether these findings suggest that areas where neuroinflammatory events occur post-stroke are at higher risk of secondary damage. The time-course of TSPO expression is slower in humans versus animal models of stroke. In human studies, the TSPO expression in the peri-infarct areas peaks 3–4 weeks after stroke and increased TSPO expression is demonstrated for months after the stroke in remote areas both ipsilesional to pyramidal tracts damage and in the contralesional hemisphere. Further clinical studies are warranted to address the role of TSPO and neuroinflammation in functional recovery and reorganization after stroke and the possible therapeutic implications. TSPO imaging appears to be a valid biomarker for demonstrating the dynamic process of neuroinflammation in stroke. But it is also clear that as the processes of microglial activation are increasingly complex, the need for new biomarkers and tracers targeting other aspect of glial reaction are needed to further investigate neuroinflammatory processes in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci 74(9):3805–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Le Fur G, Vaucher N, Perrier ML, Flamier A, Benavides J, Renault C, Dubroeucq MC, Gueremy C, Uzan A (1983) Differentiation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies. Life Sci 33:449–457

    Article  PubMed  Google Scholar 

  3. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8):402–409. doi:10.1016/j.tips.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  4. Dubois A, Benavides J, Peny B, Duverger D, Fage D, Gotti B, MacKenzie ET, Scatton B (1988) Imaging of primary and remote ischaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat. Brain Res 445(1):77–90

    Article  CAS  PubMed  Google Scholar 

  5. Benavides J, Capdeville C, Dauphin F, Dubois A, Duverger D, Fage D, Gotti B, MacKenzie ET, Scatton B (1990) The quantification of brain lesions with an w3 site ligand: a critical analysis of animal models of cerebral ischaemia and neurodegeneration. Brain Res 522:275–289

    Article  CAS  PubMed  Google Scholar 

  6. Petit-Taboue MC, Baron JC, Barre L, Travere JM, Speckel D, Camsonne R, MacKenzie ET (1991) Brain kinetics and specific binding of [11C] PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol 200:347–351

    Article  CAS  PubMed  Google Scholar 

  7. Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RS, Cremer JE (1991) Macrophage and astrocyte populations in relation to [3H] PK 11195 binding in rat cerebral cortex following a local ischaemic lesion. J Cereb Blood Flow Metab 11:314–322

    Article  CAS  PubMed  Google Scholar 

  8. Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 15:5263–5274

    CAS  PubMed  Google Scholar 

  9. Cremer JE, Hume SP, Cullen BM, Myers R, Manjil LG, Turton DR, Luthra SK, Bateman DM, Pike VW (1992) The distribution of radioactivity in brains of rats given [N-methyl-11C] PK 11195 in vivo after induction of a cortical ischaemic lesion. Int J Rad Appl Instrum B 19:159–166

    Article  CAS  PubMed  Google Scholar 

  10. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J (1994) Synthesis of the enantiomers of [N-methyl-11C] PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 21:573–581

    Article  CAS  PubMed  Google Scholar 

  11. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  CAS  PubMed  Google Scholar 

  12. Touzani O, Boutin H, Chuquet J, Rothwell N (1999) Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 100:203–215

    Article  CAS  PubMed  Google Scholar 

  13. Sette G, Baron JC, Young AR, Miyazawa H, Tillet I, Barré L, Travère JM, Derlon JM, MacKenzie ET (1993) In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke J Cereb Circ 24:2046–2057

    Article  CAS  Google Scholar 

  14. Imaizumi M, Kim HJ, Zoghbi SS, Briard E, Hong J, Musachio JL, Ruetzler C, Chuang DM, Pike VW, Innis RB, Fujita M (2007) PET imaging with [(11)C] PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett 411:200–205

    Article  CAS  PubMed  Google Scholar 

  15. Kenny BA, MacKinnon AC, Spedding M, Brown CM (1993) Changes in [3H]-PK 11195 and [3H]-8-OH-DPAT binding following forebrain ischaemia in the gerbil. Br J Pharmacol 109(2):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Earley B, Canney M, Clune B, Caldwell M, Leonard BE, Junien JL (1996) The effects of MK-801, ifenprodil, JO 1784, JO 1994 and JO 1997 on PK 11195 receptor binding, nitric oxide synthase (NO synthase) activity and infarct volume in a mouse model of focal cerebral ischaemia. Neurochem Int 28(5–6):509–521

    Article  CAS  PubMed  Google Scholar 

  17. Craven JA, Conway EL (1997) Effects of alpha 2-adrenoceptor antagonists and imidazoline2-receptor ligands on neuronal damage in global ischaemia in the rat. Clin Exp Pharmacol Physiol 24(2):204–207

    Article  CAS  PubMed  Google Scholar 

  18. Conway EL, Gundlach AL, Craven JA (1998) Temporal changes in glial fibrillary acidic protein messenger RNA and [3H] PK11195 binding in relation to imidazoline-I2-receptor and alpha 2-adrenoceptor binding in the hippocampus following transient global forebrain ischaemia in the rat. Neuroscience 82(3):805–817

    Article  CAS  PubMed  Google Scholar 

  19. Miyazawa N, Saji H, Takaishi Y, Nukui H (2000) Protective effect of FK506 in the reperfusion model after short-term occlusion of middle cerebral artery in the rat: assessment by autoradiography using [125I] PK-11195. Neurol Res 22(6):630–633

    Article  CAS  PubMed  Google Scholar 

  20. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B (2008) Nuclear imaging of neuroinflammation: a comprehensive review of [11C] PK11195 challengers. Eur J Nucl Med Mol Imaging 35(12):2304–2319. doi:10.1007/s00259-008-0908-9

    Article  PubMed  Google Scholar 

  21. Bacigaluppi M, Comi G, Hermann DM (2010) Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J 4:34–38. doi:10.2174/1874205X01004020034

    PubMed  PubMed Central  Google Scholar 

  22. Bacigaluppi M, Comi G, Hermann DM (2010) Animal models of ischemic stroke. Part one: modeling risk factors. Open Neurol J 4:26–33. doi:10.2174/1874205X01004020026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Durukan A, Tatlisumak T (2009) Animal models of ischemic stroke. Handb Clin Neurol 92:43–66. doi:10.1016/S0072-9752(08)01903-9 (edited by PJ Vinken and GW Bruyn)

    Article  PubMed  Google Scholar 

  24. Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 9:3445–3454. doi:10.2147/DDDT.S56071

    PubMed  PubMed Central  Google Scholar 

  25. Rojas S, Martin A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, Llop J, Gomez V, Gispert JD, Millan O, Chamorro A, Planas AM (2007) Imaging brain inflammation with [(11)C] PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27:1975–1986

    Article  CAS  PubMed  Google Scholar 

  26. Martin A, Boisgard R, Kassiou M, Dolle F, Tavitian B (2010) Reduced PBR/TSPO expression after minocycline treatment in a rat model of focal cerebral ischemia: a pet study using [(18)F] DPA-714. Mol Imag Biol 13:10–15

    Article  Google Scholar 

  27. Martin A, Boisgard R, Theze B, Van CN, Kuhnast B, Damont A, Kassiou M, Dolle F, Tavitian B (2010) Evaluation of the PBR/TSPO radioligand [(18)F] DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30:230–241

    Article  CAS  PubMed  Google Scholar 

  28. Martin A, Boisgard R, Theze B, Van Camp N, Kuhnast B, Damont A, Kassiou M, Dolle F, Tavitian B (2010) Evaluation of the PBR/TSPO radioligand [(18)F] DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 30(1):230–241. doi:10.1038/jcbfm.2009.205

    Article  CAS  PubMed  Google Scholar 

  29. Hughes JL, Jones PS, Beech JS, Wang D, Menon DK, Aigbirhio FI, Fryer TD, Baron JC (2012) A microPET study of the regional distribution of [11C]-PK11195 binding following temporary focal cerebral ischemia in the rat. Correlation with post mortem mapping of microglia activation. Neuroimage 59(3):2007–2016. doi:10.1016/j.neuroimage.2011.10.060

    Article  CAS  PubMed  Google Scholar 

  30. Lavisse S, Guillermier M, Herard AS, Petit F, Delahaye M, Van CN, Ben HL, Lebon V, Remy P, Dolle F, Delzescaux T, Bonvento G, Hantraye P, Escartin C (2012) Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 32:10809–10818

    Article  CAS  PubMed  Google Scholar 

  31. Arnberg F, Lundberg J, Soderman M, Damberg P, Holmin S (2012) Image-guided method in the rat for inducing cortical or striatal infarction and for controlling cerebral blood flow under MRI. Stroke J Cereb Circ 43(9):2437–2443. doi:10.1161/STROKEAHA.112.655126

    Article  Google Scholar 

  32. Toth M, Little P, Arnberg F, Haggkvist J, Mulder J, Halldin C, Gulyas B, Holmin S (2015) Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke model in rat: longitudinal positron emission tomography and immunofluorescent tracking. Brain Struct Funct. doi:10.1007/s00429-014-0970-y

    Google Scholar 

  33. Rueger MA, Muesken S, Walberer M, Jantzen SU, Schnakenburg K, Backes H, Graf R, Neumaier B, Hoehn M, Fink GR, Schroeter M (2012) Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience 215:174–183. doi:10.1016/j.neuroscience.2012.04.036

    Article  CAS  PubMed  Google Scholar 

  34. Banwell V, Sena ES, Macleod MR (2009) Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J Stroke Cerebrovasc Dis 18:269–276

    Article  PubMed  Google Scholar 

  35. Parry-Jones A, Boutin H, Denes A, McColl B, Hopkins S, Allan S, Tyrrell P (2010) Interleukin-1 receptor antagonist in animal models of stroke: a fair summing up? J Stroke Cerebrovasc Dis 19:512–513

    Article  PubMed  Google Scholar 

  36. Pinteaux E, Rothwell NJ, Boutin H (2006) Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia 53:551–556

    Article  PubMed  Google Scholar 

  37. Pradillo JM, Denes A, Greenhalgh AD, Boutin H, Drake C, McColl BW, Barton E, Proctor SD, Russell JC, Rothwell NJ, Allan SM (2012) Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J Cereb Blood Flow Metab 32:1810–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ali C, Nicole O, Docagne F, Lesne S, MacKenzie ET, Nouvelot A, Buisson A, Vivien D (2000) Ischemia-induced interleukin-6 as a potential endogenous neuroprotective cytokine against NMDA receptor-mediated excitotoxicity in the brain. J Cereb Blood Flow Metab 20:956–966

    Article  CAS  PubMed  Google Scholar 

  39. Ali C, Nicole O, Docagne F, Lesne S, Nouvelot A, MacKenzie ET, Buisson A, Vivien D (1999) Evidence that IL-6 is selectively neuroprotective against excitotoxic-type of ischemic neuronal death. Paper presented at the J Cereb Blood Flow Metab, 1999

  40. Hill JK, Gunion-Rinker L, Kulhanek D, Lessov N, Kim S, Clark WM, Dixon MP, Nishi R, Stenzel-Poore MP, Eckenstein FP (1999) Temporal modulation of cytokine expression following focal cerebral ischemia in mice. Brain Res 820:45–54

    Article  CAS  PubMed  Google Scholar 

  41. Dodel R, Spottke A, Gerhard A, Reuss A, Reinecker S, Schimke N, Trenkwalder C, Sixel-Doring F, Herting B, Kamm C, Gasser T, Sawires M, Geser F, Kollensperger M, Seppi K, Kloss M, Krause M, Daniels C, Deuschl G, Bottger S, Naumann M, Lipp A, Gruber D, Kupsch A, Du Y, Turkheimer F, Brooks DJ, Klockgether T, Poewe W, Wenning G, Schade-Brittinger C, Oertel WH, Eggert K (2010) Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord: Off J Mov Disord Soc 25:97–107

    Article  Google Scholar 

  42. Wang Y, Yue X, Kiesewetter DO, Wang Z, Lu J, Niu G, Teng G, Chen X (2014) [(18)F]DPA-714 PET imaging of AMD3100 treatment in a mouse model of stroke. Mol Pharm 11:3463–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boutin H, Prenant C, Galea J, Greenhalgh A, Julyan P, Brown G, Herholz K, Kassiou M, Rothwell NJ (2008) [18F]DPA-714: evaluation and direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. Paper presented at the 1st world molecular imaging congress, 11/10/2008

  44. Schroeter M, Dennin MA, Walberer M, Backes H, Neumaier B, Fink GR, Graf R (2009) Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab 29:1216–1225

    Article  CAS  PubMed  Google Scholar 

  45. Fukumoto D, Hosoya T, Nishiyama S, Harada N, Iwata H, Yamamoto S, Tsukada H (2011) Multiparametric assessment of acute and subacute ischemic neuronal damage: a small animal positron emission tomography study with rat photochemically induced thrombosis model. Synapse 65:207–214

    Article  CAS  PubMed  Google Scholar 

  46. Fukumoto D, Nishiyama S, Harada N, Yamamoto S, Tsukada H (2012) Detection of ischemic neuronal damage with [(1)(8)F] BMS-747158-02, a mitochondrial complex-1 positron emission tomography ligand: small animal PET study in rat brain. Synapse 66:909–917

    Article  CAS  PubMed  Google Scholar 

  47. Walberer M, Jantzen SU, Backes H, Rueger MA, Keuters MH, Neumaier B, Hoehn M, Fink GR, Graf R, Schroeter M (2014) In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats. Brain Res 1581:80–88. doi:10.1016/j.brainres.2014.05.030

    Article  CAS  PubMed  Google Scholar 

  48. Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A (1990) Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke J Cereb Circ 21:1485–1488

    Article  CAS  Google Scholar 

  49. Iizuka H, Sakatani K, Young W (1990) Neural damage in the rat thalamus after cortical infarcts. Stroke J Cereb Circ 21:790–794

    Article  CAS  Google Scholar 

  50. Yui J, Maeda J, Kumata K, Kawamura K, Yanamoto K, Hatori A, Yamasaki T, Nengaki N, Higuchi M, Zhang MR (2010) 18F-FEAC and 18F-FEDAC: PET of the monkey brain and imaging of translocator protein (18 kDa) in the infarcted rat brain. J Nucl Med 51:1301–1309

    Article  CAS  PubMed  Google Scholar 

  51. Yui J, Hatori A, Kawamura K, Yanamoto K, Yamasaki T, Ogawa M, Yoshida Y, Kumata K, Fujinaga M, Nengaki N, Fukumura T, Suzuki K, Zhang MR (2011) Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [11C] DAC with ultra-high specific activity. Neuroimage 54:123–130

    Article  CAS  PubMed  Google Scholar 

  52. Yui J, Hatori A, Yanamoto K, Takei M, Nengaki N, Kumata K, Kawamura K, Yamasaki T, Suzuki K, Zhang MR (2010) Imaging of the translocator protein (18 kDa) in rat brain after ischemia using [11C] DAC with ultra-high specific activity. Synapse 64(6):488–493. doi:10.1002/syn.20761

    Article  CAS  PubMed  Google Scholar 

  53. Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, Cawthorne C, Julyan P, Wilkinson SM, Banister SD, Brown G, Herholz K, Kassiou M, Rothwell NJ (2013) [18F]DPA-714: direct comparison with [11C] PK11195 in a model of cerebral ischemia in rats. PLoS One 8(2):e56441. doi:10.1371/journal.pone.0056441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, Jones PA, Trigg W (2015) 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 42(3):503–511. doi:10.1007/s00259-014-2939-8

    Article  CAS  PubMed  Google Scholar 

  55. Higuchi M (2009) Visualization of brain amyloid and microglial activation in mouse models of Alzheimer’s disease. Curr Alzheimer Res 6:137–143

    Article  CAS  PubMed  Google Scholar 

  56. Hume SP, Gunn RN, Jones T (1998) Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 25(2):173–176

    Article  CAS  PubMed  Google Scholar 

  57. Lartey FM, Ahn GO, Shen B, Cord KT, Smith T, Chua JY, Rosenblum S, Liu H, James ML, Chernikova S, Lee SW, Pisani LJ, Tirouvanziam R, Chen JW, Palmer TD, Chin FT, Guzman R, Graves EE, Loo BW Jr (2014) PET imaging of stroke-induced neuroinflammation in mice using [18F] PBR06. Mol Imag Biol 16(1):109–117. doi:10.1007/s11307-013-0664-5

    Article  Google Scholar 

  58. Dolle F, Luus C, Reynolds A, Kassiou M (2009) Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem 16(22):2899–2923

    Article  CAS  PubMed  Google Scholar 

  59. Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50(3):468–476. doi:10.2967/jnumed.108.058669

    Article  CAS  PubMed  Google Scholar 

  60. Tiwari AK, Ji B, Yui J, Fujinaga M, Yamasaki T, Xie L, Luo R, Shimoda Y, Kumata K, Zhang Y, Hatori A, Maeda J, Higuchi M, Wang F, Zhang MR (2015) [(18)F]FEBMP: positron emission tomography imaging of TSPO in a model of neuroinflammation in rats, and in vitro autoradiograms of the human brain. Theranostics 5(9):961–969. doi:10.7150/thno.12027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tiwari AK, Yui J, Fujinaga M, Kumata K, Shimoda Y, Yamasaki T, Xie L, Hatori A, Maeda J, Nengaki N, Zhang MR (2014) Characterization of a novel acetamidobenzoxazolone-based PET ligand for translocator protein (18 kDa) imaging of neuroinflammation in the brain. J Neurochem 129:712–720

    Article  CAS  PubMed  Google Scholar 

  62. Owen DR, Howell OW, Tang SP, Wells LA, Bennacef I, Bergstrom M, Gunn RN, Rabiner EA, Wilkins MR, Reynolds R, Matthews PM, Parker CA (2010) Two binding sites for [3H] PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab 30(9):1608–1618. doi:10.1038/jcbfm.2010.63

    Article  PubMed  PubMed Central  Google Scholar 

  63. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, Innis RB, Pike VW, Reynolds R, Matthews PM, Parker CA (2011) Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 52(1):24–32. doi:10.2967/jnumed.110.079459

    Article  CAS  PubMed  Google Scholar 

  64. Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN (2012) Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. Neuroimage 60(2):902–910. doi:10.1016/j.neuroimage.2011.12.078

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ramsay SC, Weiller C, Myers R, Cremer JE, Luthra SK, Lammertsma AA, Frackowiak RS (1992) Monitoring by PET of macrophage accumulation in brain after ischaemic stroke. Lancet 339(8800):1054–1055

    Article  CAS  PubMed  Google Scholar 

  66. Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, Ludolph AC, Reske SN (2000) In vivo imaging of activated microglia using [11C] PK11195 and positron emission tomography in patients after ischemic stroke. NeuroReport 11(13):2957–2960

    Article  CAS  PubMed  Google Scholar 

  67. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, Jones T, Kreutzberg GW, Banati RB (2000) Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C] PK1195. Neurology 55(7):1052–1054

    Article  CAS  PubMed  Google Scholar 

  68. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24(2):591–595. doi:10.1016/j.neuroimage.2004.09.034

    Article  PubMed  Google Scholar 

  69. Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, Aigbirhio F, Baron JC, Warburton EA (2006) Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke J Cereb Circ 37(7):1749–1753. doi:10.1161/01.STR.0000226980.95389.0b

    Article  Google Scholar 

  70. Radlinska BA, Ghinani SA, Lyon P, Jolly D, Soucy JP, Minuk J, Schirrmacher R, Thiel A (2009) Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann Neurol 66(6):825–832. doi:10.1002/ana.21796

    Article  PubMed  Google Scholar 

  71. Thiel A, Radlinska BA, Paquette C, Sidel M, Soucy JP, Schirrmacher R, Minuk J (2010) The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke. J Nucl Med 51(9):1404–1412. doi:10.2967/jnumed.110.076612

    Article  CAS  PubMed  Google Scholar 

  72. Gulyas B, Toth M, Schain M, Airaksinen A, Vas A, Kostulas K, Lindstrom P, Hillert J, Halldin C (2012) Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11))C] vinpocetine. J Neurol Sci 320(1–2):110–117. doi:10.1016/j.jns.2012.06.026

    Article  CAS  PubMed  Google Scholar 

  73. Gulyas B, Toth M, Vas A, Shchukin E, Kostulas K, Hillert J, Halldin C (2012) Visualising neuroinflammation in post-stroke patients: a comparative PET study with the TSPO molecular imaging biomarkers [11C] PK11195 and [11C] vinpocetine. Curr Radiopharm 5(1):19–28

    Article  CAS  PubMed  Google Scholar 

  74. Ribeiro MJ, Vercouillie J, Debiais S, Cottier JP, Bonnaud I, Camus V, Banister S, Kassiou M, Arlicot N, Guilloteau D (2014) Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res 4:28. doi:10.1186/s13550-014-0028-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Feng L, Svarer C, Thomsen G, de Nijs R, Larsen VA, Jensen P, Adamsen D, Dyssegaard A, Fischer W, Meden P, Krieger D, Moller K, Knudsen GM, Pinborg LH (2014) In vivo quantification of cerebral translocator protein binding in humans using 6-chloro-2-(4’-123I-iodophenyl)-3-(N, N-diethyl)-imidazo[1,2-a]pyridine-3-acetamid e SPECT. J Nucl Med 55(12):1966–1972. doi:10.2967/jnumed.114.143727

    Article  CAS  PubMed  Google Scholar 

  76. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4):279–287. doi:10.1006/nimg.1997.0303

    Article  CAS  PubMed  Google Scholar 

  77. Folkersma H, Boellaard R, Vandertop WP, Kloet RW, Lubberink M, Lammertsma AA, van Berckel BN (2009) Reference tissue models and blood-brain barrier disruption: lessons from (R)-[11C] PK11195 in traumatic brain injury. J Nucl Med 50(12):1975–1979. doi:10.2967/jnumed.109.067512

    Article  PubMed  Google Scholar 

  78. Jensen P, Feng L, Law I, Svarer C, Knudsen GM, Mikkelsen JD, de Nijs R, Larsen VA, Dyssegaard A, Thomsen G, Fischer W, Guilloteau D, Pinborg LH (2015) TSPO imaging in glioblastoma multiforme: a direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. J Nucl Med 56(9):1386–1390. doi:10.2967/jnumed.115.158998

    Article  CAS  PubMed  Google Scholar 

  79. Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S (2004) In vivo MRI of brain inflammation in human ischaemic stroke. Brain J Neurol 127(Pt 7):1670–1677. doi:10.1093/brain/awh191

    Article  Google Scholar 

  80. Nighoghossian N, Wiart M, Cakmak S, Berthezene Y, Derex L, Cho TH, Nemoz C, Chapuis F, Tisserand GL, Pialat JB, Trouillas P, Froment JC, Hermier M (2007) Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke J Cereb Circ 38(2):303–307. doi:10.1161/01.STR.0000254548.30258.f2

    Article  Google Scholar 

  81. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacef I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32(1):1–5. doi:10.1038/jcbfm.2011.147

    Article  CAS  PubMed  Google Scholar 

  82. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, Zoghbi SS, Hyde T, Kleinman JE, Pike VW, McMahon FJ, Innis RB (2013) A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 33(1):53–58. doi:10.1038/jcbfm.2012.131

    Article  CAS  PubMed  Google Scholar 

  83. Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, Allan SM (2007) Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab 27(12):1941–1953. doi:10.1038/sj.jcbfm.9600495

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C, Voytenko L, Marutle A, Nordberg A (2015) Astrocytosis precedes amyloid plaque deposition in alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imag

  85. Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, Nordberg A (2012) Evidence for astrocytosis in prodromal alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53:37–46

    Article  CAS  PubMed  Google Scholar 

  86. Evens N, Vandeputte C, Coolen C, Janssen P, Sciot R, Baekelandt V, Verbruggen AM, Debyser Z, Van Laere K, Bormans GM (2012) Preclinical evaluation of [11C]NE40, a type 2 cannabinoid receptor PET tracer. Nucl Med Biol 39(3):389–399. doi:10.1016/j.nucmedbio.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  87. Vandeputte C, Casteels C, Struys T, Koole M, van Veghel D, Evens N, Gerits A, Dresselaers T, Lambrichts I, Himmelreich U, Bormans G, Van Laere K (2012) Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model. Eur J Nucl Med Mol Imag 39:1796–1806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-F2-2011-278850 (INMiND), the Danish Council for Independent Research, the Research Committee of Rigshospitalet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars H. Pinborg.

Ethics declarations

Hervé Boutin and Lars H. Pinborg declare no conflicts of interest. The article contains data from studies with human and animal subjects performed by the authors of this article. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutin, H., Pinborg, L.H. TSPO imaging in stroke: from animal models to human subjects. Clin Transl Imaging 3, 423–435 (2015). https://doi.org/10.1007/s40336-015-0146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0146-7

Keywords

Navigation