Clinical and Translational Imaging

, Volume 3, Issue 6, pp 437–447 | Cite as

Molecular imaging of neuroinflammation in Alzheimer’s disease

  • Andrea Varrone
  • Agneta Nordberg
Review Article


Neuroinflammatory changes are observed in the brain of patients with Alzheimer’s disease (AD). Studies have shown the presence of activated microglia and astrocytes surrounding the amyloid plaques, along with the presence of cytokines and other mediators of inflammation. The role of inflammation in AD is not yet completely understood. More specifically, some inflammatory processes, such as the activation of microglia, may have detrimental or beneficial effects on the underlining neuropathology, by promoting inflammation and tissue damage or rather phagocytic activity and tissue repair. Imaging of neuroinflammation with positron emission tomography (PET) is the only technology that enables the visualization of microglia and astrocyte activation in the living human brain. PET studies with first- or second-generation radioligands binding to the 18-kDa translocator protein (TSPO) ([11C]-R-PK11195, [11C]DAA1106, [11C]PBR28, [18F]FEMPA, [18F]FEPPA) have shown some conflicting results, demonstrating on average a ~30 % higher TSPO availability in AD patients compared with controls, with a few studies showing no statistically significant difference between the two groups. Similar conflicting evidences have been shown when comparing subjects with mild cognitive impairment (MCI) and control subjects. Therefore, whether TSPO is a good marker for detecting in vivo microglia activation in AD is still a matter of debate. Imaging of MAO-B as a marker for astrocyte activation in AD is a valid alternative to TSPO imaging in the context of neuroinflammation. Only limited MAO-B imaging studies with [11C]l-deprenyl-D2 are available so far in AD and MCI, showing increased MAO-B binding in MCI patients compared with controls with a degree higher than that observed in AD. There are two unmet questions that are still under discussion. The first question is which neuroinflammatory process, microglia or astrocyte activation, occurs earlier in the natural course of AD from prodromal to dementia stage? Comparative studies using these two markers in MCI and AD could be important to clarify which marker can be used for earliest detection of neuroinflammatory changes in vivo. The second question is whether imaging of microglia or astrocytes per se is a useful marker of neuroinflammation associated with neurodegeneration. The development of new radioligands for other targets that are more directly associated with the pro- or anti-inflammatory activity of microglia could help in understanding the relevance of neuroinflammation in the pathological processes leading to neurodegeneration in AD. Molecular imaging with PET can be a useful tool to determine the nature and temporal evolution of inflammation in early stages of AD in relation to other pathological markers, such as deposition of amyloid plaques and tau as well as clinical presentation of the disease.


TSPO Alzheimer Microglia Astrocytes 



The work has been supported by funds from the Swedish Research Council (Project 05817), Karolinska Institutet Strategic Neuroscience program, the Stockholm County Council-Karolinska Institutet regional agreement on medical training and clinical research (ALF Grant), Swedish Brain Power, the Swedish Brain Foundation, the Alzheimer Foundation in Sweden, Karolinska Institutet’s Foundation for Aging Research, Swedish Foundation for Strategic Research (SFF), and by the EU project INMiND, FP7/2007-2013-no HEALTH-F2-2011-278850 ( Part of the work has been also supported by Bayer Healthcare, Berlin, Germany.

Contribution statement

Andrea Varrone is responsible for literature search and review, content planning, manuscript writing and editing. Agneta Nordberg contributed to literature search and review, content planning, manuscript writing and editing.

Compliance with ethical standards

Conflict of interest

Andrea Varrone and Agneta Nordberg declare no conflicts of interest. The work performed using [18F]FEMPA has been supported by Bayer Healthcare, Berlin, Germany.

Human and animal studies

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study. In cases of animal studies, all institutional and national guidelines for the care and use of laboratory animals were followed.


  1. 1.
    Breitner JC, Gau BA, Welsh KA, Plassman BL, McDonald WM, Helms MJ et al (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44:227–232CrossRefPubMedGoogle Scholar
  2. 2.
    Aisen PS, Davis KL, Berg JD, Schafer K, Campbell K, Thomas RG et al (2000) A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology 54:588–593CrossRefPubMedGoogle Scholar
  3. 3.
    Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. doi: 10.1001/jama.289.21.2819 CrossRefPubMedGoogle Scholar
  4. 4.
    Aisen PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 151:1105–1113CrossRefPubMedGoogle Scholar
  5. 5.
    Rogers J, Webster S, Lue LF, Brachova L, Civin WH, Emmerling M et al (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17:681–686CrossRefPubMedGoogle Scholar
  6. 6.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. doi: 10.1016/S1474-4422(15)70016-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42:1291–1301. doi: 10.1042/BST20140107 CrossRefPubMedGoogle Scholar
  8. 8.
    Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724. doi: 10.1038/nature06616 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18. doi: 10.1111/nan.12011 CrossRefPubMedGoogle Scholar
  10. 10.
    Tang Y, Le W (2015) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. doi: 10.1007/s12035-014-9070-5 Google Scholar
  11. 11.
    Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661. doi: 10.1523/JNEUROSCI.3024-08.2008 CrossRefPubMedGoogle Scholar
  12. 12.
    Jacobs AH, Tavitian B (2012) Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32:1393–1415. doi: 10.1038/jcbfm.2012.53 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328. doi: 10.1111/j.1365-2990.2008.01006.x CrossRefPubMedGoogle Scholar
  14. 14.
    Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322. doi: 10.1016/j.pneurobio.2006.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Venneti S, Wang G, Nguyen J, Wiley CA (2008) The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 67:1001–1010. doi: 10.1097/NEN.0b013e318188b204 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Levitt P, Pintar JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79:6385–6389CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230:181–183CrossRefPubMedGoogle Scholar
  18. 18.
    Ekblom J, Jossan SS, Bergstrom M, Oreland L, Walum E, Aquilonius SM (1993) Monoamine oxidase-B in astrocytes. Glia 8:122–132. doi: 10.1002/glia.440080208 CrossRefPubMedGoogle Scholar
  19. 19.
    Ekblom J, Jossan SS, Oreland L, Walum E, Aquilonius SM (1994) Reactive gliosis and monoamine oxidase B. J Neural Transm Suppl 41:253–258PubMedGoogle Scholar
  20. 20.
    Jossan SS, Ekblom J, Aquilonius SM, Oreland L (1994) Monoamine oxidase-B in motor cortex and spinal cord in amyotrophic lateral sclerosis studied by quantitative autoradiography. J Neural Transm Suppl 41:243–248PubMedGoogle Scholar
  21. 21.
    Jossan SS, Ekblom J, Gudjonsson O, Hagbarth KE, Aquilonius SM (1994) Double blind cross over trial with deprenyl in amyotrophic lateral sclerosis. J Neural Transm Suppl 41:237–241PubMedGoogle Scholar
  22. 22.
    Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H (1990) Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 80:419–425CrossRefPubMedGoogle Scholar
  23. 23.
    Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G et al (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62:15–30CrossRefPubMedGoogle Scholar
  24. 24.
    Jossan SS, Gillberg PG, Gottfries CG, Karlsson I, Oreland L (1991) Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience 45:1–12CrossRefPubMedGoogle Scholar
  25. 25.
    Gulyas B, Pavlova E, Kasa P, Gulya K, Bakota L, Varszegi S et al (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography. Neurochem Int 58:60–68. doi: 10.1016/j.neuint.2010.10.013 CrossRefPubMedGoogle Scholar
  26. 26.
    Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D et al (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235:481–485CrossRefPubMedGoogle Scholar
  27. 27.
    Fowler JS, Volkow ND, Logan J, Schlyer DJ, MacGregor RR, Wang GJ et al (1993) Monoamine oxidase B (MAO B) inhibitor therapy in Parkinson’s disease: the degree and reversibility of human brain MAO B inhibition by Ro 19 6327. Neurology 43:1984–1992CrossRefPubMedGoogle Scholar
  28. 28.
    Fowler JS, Wolf AP, MacGregor RR, Dewey SL, Logan J, Schlyer DJ et al (1988) Mechanistic positron emission tomography studies: demonstration of a deuterium isotope effect in the monoamine oxidase-catalyzed binding of [11C]l-deprenyl in living baboon brain. J Neurochem 51:1524–1534CrossRefPubMedGoogle Scholar
  29. 29.
    Bergstrom M, Kumlien E, Lilja A, Tyrefors N, Westerberg G, Langstrom B (1998) Temporal lobe epilepsy visualized with PET with 11C-l-deuterium-deprenyl–analysis of kinetic data. Acta Neurol Scand 98:224–231CrossRefPubMedGoogle Scholar
  30. 30.
    Kumlien E, Nilsson A, Hagberg G, Langstrom B, Bergstrom M (2001) PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol Scand 103:360–366CrossRefPubMedGoogle Scholar
  31. 31.
    Engler H, Lundberg PO, Ekbom K, Nennesmo I, Nilsson A, Bergstrom M et al (2003) Multitracer study with positron emission tomography in Creutzfeldt–Jakob disease. Eur J Nucl Med Mol Imaging 30:85–95. doi: 10.1007/s00259-002-1008-x CrossRefPubMedGoogle Scholar
  32. 32.
    Johansson A, Engler H, Blomquist G, Scott B, Wall A, Aquilonius SM et al (2007) Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci 255:17–22. doi: 10.1016/j.jns.2007.01.057 CrossRefPubMedGoogle Scholar
  33. 33.
    Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R et al (1998) Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 17:23–34. doi: 10.1300/J069v17n01_03 CrossRefPubMedGoogle Scholar
  34. 34.
    Logan J, Fowler JS (2005) Evidence for reduced arterial plasma input, prolonged lung retention and reduced lung monoamine oxidase in smokers. Nucl Med Biol 32:521–529. doi: 10.1016/j.nucmedbio.2005.03.004 CrossRefPubMedGoogle Scholar
  35. 35.
    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE et al (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467. doi: 10.1016/S0140-6736(01)05625-2 CrossRefPubMedGoogle Scholar
  36. 36.
    Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK et al (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64:835–841. doi: 10.1016/j.biopsych.2008.04.021 CrossRefPubMedGoogle Scholar
  37. 37.
    Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyas B et al (2013) In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging 40:921–931. doi: 10.1007/s00259-013-2359-1 CrossRefPubMedGoogle Scholar
  38. 38.
    Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136:2228–2238. doi: 10.1093/brain/awt145 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O et al (2015) Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging 42:438–446. doi: 10.1007/s00259-014-2955-8 CrossRefPubMedGoogle Scholar
  40. 40.
    Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD et al (2015) Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab 35:766–772. doi: 10.1038/jcbfm.2014.261 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Suridjan I, Pollock BG, Verhoeff NP, Voineskos AN, Chow T, Rusjan PM et al (2015) In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, [F]-FEPPA. Mol Psychiatry. doi: 10.1038/mp.2015.1 PubMedGoogle Scholar
  42. 42.
    Pasqualetti G, Brooks DJ, Edison P (2015) The role of neuroinflammation in dementias. Curr Neurol Neurosci Rep 15:17. doi: 10.1007/s11910-015-0531-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Varley J, Brooks DJ, Edison P (2014) Imaging neuroinflammation in Alzheimer’s and other dementias: recent advances and future directions. Alzheimers Dement. doi: 10.1016/j.jalz.2014.08.105 PubMedGoogle Scholar
  44. 44.
    Kropholler MA, Boellaard R, van Berckel BN, Schuitemaker A, Kloet RW, Lubberink MJ et al (2007) Evaluation of reference regions for (R)-[(11)C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. J Cereb Blood Flow Metab 27:1965–1974. doi: 10.1038/sj.jcbfm.9600488 CrossRefPubMedGoogle Scholar
  45. 45.
    Tomasi G, Edison P, Bertoldo A, Roncaroli F, Singh P, Gerhard A et al (2008) Novel reference region model reveals increased microglial and reduced vascular binding of 11C-(R)-PK11195 in patients with Alzheimer’s disease. J Nucl Med 49:1249–1256. doi: 10.2967/jnumed.108.050583 CrossRefPubMedGoogle Scholar
  46. 46.
    Yaqub M, van Berckel BN, Schuitemaker A, Hinz R, Turkheimer FE, Tomasi G et al (2012) Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[(11)C]PK11195 brain PET studies. J Cereb Blood Flow Metab 32:1600–1608. doi: 10.1038/jcbfm.2012.59 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kim S, Nho K, Risacher SL, Inlow M, Swaminathan S, Yoder KK et al (2013) Gene variation and microglial activity on [C]PBR28 PET in older adults at risk for Alzheimer’s disease. Multimodal Brain Image Anal 8159:150–158. doi: 10.1007/978-3-319-02126-3_15 CrossRefGoogle Scholar
  48. 48.
    Versijpt JJ, Dumont F, Van Laere KJ, Decoo D, Santens P, Audenaert K et al (2003) Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur Neurol 50:39–47CrossRefPubMedGoogle Scholar
  49. 49.
    Gulyas B, Vas A, Toth M, Takano A, Varrone A, Cselenyi Z et al (2011) Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C]vinpocetine. Neuroimage 56:1111–1121. doi: 10.1016/j.neuroimage.2011.02.020 CrossRefPubMedGoogle Scholar
  50. 50.
    Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–419. doi: 10.1016/j.nbd.2008.08.001 CrossRefPubMedGoogle Scholar
  51. 51.
    Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y et al (2012) Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(1)(1)C]DAA1106. Psychiatry Res 203:67–74. doi: 10.1016/j.pscychresns.2011.08.013 CrossRefPubMedGoogle Scholar
  52. 52.
    Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y et al (2011) In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 38:343–351. doi: 10.1007/s00259-010-1612-0 CrossRefPubMedGoogle Scholar
  53. 53.
    Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE (1995) PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 36:2207–2210PubMedGoogle Scholar
  54. 54.
    Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST et al (2009) Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66:60–67. doi: 10.1001/archneurol.2008.511 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF et al (2013) Microglial activation in Alzheimer’s disease: an (R)-[(1)(1)C]PK11195 positron emission tomography study. Neurobiol Aging 34:128–136. doi: 10.1016/j.neurobiolaging.2012.04.021 CrossRefPubMedGoogle Scholar
  56. 56.
    Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K et al (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 11(608–21):e7. doi: 10.1016/j.jalz.2014.06.016 Google Scholar
  57. 57.
    Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW et al (2015) Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with pet radioligand binding to translocator protein. J Nucl Med 56:701–706. doi: 10.2967/jnumed.114.146027 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    McGeer EG, Singh EA, McGeer PL (1988) Peripheral-type benzodiazepine binding in Alzheimer disease. Alzheimer Dis Assoc Disord 2:331–336CrossRefPubMedGoogle Scholar
  59. 59.
    Diorio D, Welner SA, Butterworth RF, Meaney MJ, Suranyi-Cadotte BE (1991) Peripheral benzodiazepine binding sites in Alzheimer’s disease frontal and temporal cortex. Neurobiol Aging 12:255–258CrossRefPubMedGoogle Scholar
  60. 60.
    Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX (2006) Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 138:749–756. doi: 10.1016/j.neuroscience.2005.05.063 CrossRefPubMedGoogle Scholar
  61. 61.
    Gulyas B, Makkai B, Kasa P, Gulya K, Bakota L, Varszegi S et al (2009) A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int 54:28–36. doi: 10.1016/j.neuint.2008.10.001 CrossRefPubMedGoogle Scholar
  62. 62.
    Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalogiannopoulou D, Dimber R et al (2014) Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab 34:989–994. doi: 10.1038/jcbfm.2014.46 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R et al (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62. doi: 10.1212/01.wnl.0000338622.27876.0d CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Marutle A, Gillberg PG, Bergfors A, Yu W, Ni R, Nennesmo I et al (2013) (3)H-deprenyl and (3)H-PIB autoradiography show different laminar distributions of astroglia and fibrillar beta-amyloid in Alzheimer brain. J Neuroinflammation 10:90. doi: 10.1186/1742-2094-10-90 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hirvonen J, Kailajarvi M, Haltia T, Koskimies S, Nagren K, Virsu P et al (2009) Assessment of MAO-B occupancy in the brain with PET and [11C]-l-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther 85:506–512. doi: 10.1038/clpt.2008.241 CrossRefPubMedGoogle Scholar
  66. 66.
    Santillo AF, Gambini JP, Lannfelt L, Langstrom B, Ulla-Marja L, Kilander L et al (2011) In vivo imaging of astrocytosis in Alzheimer’s disease: an (1)(1)C-l-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging 38:2202–2208. doi: 10.1007/s00259-011-1895-9 CrossRefPubMedGoogle Scholar
  67. 67.
    Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B et al (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-l-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53:37–46. doi: 10.2967/jnumed.110.087031 CrossRefPubMedGoogle Scholar
  68. 68.
    Choo IL, Carter SF, Scholl ML, Nordberg A (2014) Astrocytosis measured by (1)(1)C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer’s patients. Eur J Nucl Med Mol Imaging 41:2120–2126. doi: 10.1007/s00259-014-2859-7 CrossRefPubMedGoogle Scholar
  69. 69.
    Nordberg A (2014) Molecular imaging in sporadic Alzheimer’s disease populations and those genetically at risk. Neurodegener Dis 13:160–162. doi: 10.1159/000356333 CrossRefPubMedGoogle Scholar
  70. 70.
    Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C et al (2015) Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imaging 42:1119–1132. doi: 10.1007/s00259-015-3047-0 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2015

Authors and Affiliations

  1. 1.Department of Clinical Neuroscience, Karolinska InstitutetCentre for Psychiatry ResearchStockholmSweden
  2. 2.Department of Neurobiology, Karolinska InstitutetCare Sciences and SocietyStockholmSweden

Personalised recommendations