Lettera Matematica

, Volume 5, Issue 4, pp 297–303 | Cite as

The twin prime conjecture and other curiosities regarding prime numbers



The paper begins with a reference to Riemann’s hypothesis on the sequence of prime numbers, still unproven today, and goes on to illustrate the twin prime conjecture and the more general Polignac’s conjecture; we then recount the recent result by Yitang Zhang about it, and the improvements obtained thanks to the online mathematical collaboration called Polymath 8.


Prime numbers Riemann’s hypothesis Twin primes Polignac’s Conjecture Bounded gaps between prime numbers 


  1. 1.
    Büthe, J.: An analytic method for bounding ψ(x). arXiv:1511.02032 [math.NT] (2015)Google Scholar
  2. 2.
    Chen, J.R.: On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica. 16, 157–176 (1973)MathSciNetMATHGoogle Scholar
  3. 3.
    Conway, J.H., Guy, R.K.: The book of numbers. Springer, New York (1996)CrossRefMATHGoogle Scholar
  4. 4.
    Cranshaw, J., Kittur, A.: The Polymath Project: Lessons from a Successful Online Collaboration in Mathematics. Proc. SIGCHI Conf. on Human Factors in Computing Systems, ACM, 1865–74: (2011), available at: http://www.cs.cmu.edu/~jcransh/papers/cranshaw_kittur.pdf. Accessed 31 Oct 2017
  5. 5.
    Gourdon, X., Sebah, P.: Introduction to twin primes and Brun’s constant (2002). Available at: http://numbers.computation.free.fr/Constants/Primes/twin.html. Accessed 31 Oct 2017
  6. 6.
    Gowers, T.: Is massively collaborative mathematics possible? Gowers’s Weblog: (2009), available at: https://gowers.wordpress.com/2009/01/27/is-massively-collaborative-mathematics-possible/. Accessed 31 Oct 2017
  7. 7.
    Gowers, T., Nielsen, M.: Massively collaborative mathematics. Nature. 461, 879–881 (2009)CrossRefGoogle Scholar
  8. 8.
    Lehman, R.S.: On the difference π(x)-Li(x). Acta Arith. 11, 397–410 (1966)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Littlewood, J.E.: Sur la distribution des nombres premiers. Comptes Rendus. 158, 1869–1872 (1914)MATHGoogle Scholar
  10. 10.
    Martin, B.: Des jumeaux dans la famille des nombres premiers I. Images des mathématiques, 20 March: (2015), available at: http://images.math.cnrs.fr/Des-jumeaux-dans-la-famille-des-nombres-premiers-I. Accessed 31 Oct 2017
  11. 11.
    Martin, B.: Des jumeaux dans la famille des nombres premiers II. Images des mathématiques, 21 June: (2015), available at: http://images.math.cnrs.fr/Des-jumeaux-dans-la-famille-des-nombres-premiers-II. Accessed 31 Oct 2017
  12. 12.
    Martin, B.: Des jumeaux dans la famille des nombres premiers III. Images des mathématiques, 20 September: (2015). http://images.math.cnrs.fr/Des-jumeaux-dans-la-famille-des-nombres-premiers-III. Accessed 31 Oct 2017
  13. 13.
    Nicely, T.: Enumeration to 1014 of the twin primes and Brun’s constant. Virginia J. of Science 46, 195–204: (1996). http://www.trnicely.net/twins/twins.html; Accessed 31 Oct 2017
  14. 14.
    Nicely, T.: A new error analysis of Brun’s constant. Virginia J. of Science 52, 45–55: (2001). http://www.trnicely.net/twins/twins4.html. Accessed 31 Oct 2017
  15. 15.
    Polignac, A.: Recherches nouvelles sur les nombres premiers. Comptes Rendus Paris 29, 400 (1849) (738–39 [Rectification])Google Scholar
  16. 16.
    Polignac, A.: Recherches nouvelles sur les nombres premiers. Bachelier, Paris (1851)Google Scholar
  17. 17.
    Polymath, D.H.J.: The “bounded gaps between primes” Polymath project—a retrospective. arXiv:1409.8361 [math.HO] (2014)Google Scholar
  18. 18.
    Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Grosse. Monatsberichte der Berliner Akademie, 671–680 (1859)Google Scholar
  19. 19.
    Skewes, S.: On the difference π(x)–li(x). J. Lond. Math. Soc. 8, 277–283 (1933)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tietze, H.: Famous problems of mathematics: solved and unsolved mathematics problems from antiquity to modern times. Graylock Press, Baltimore (1965)MATHGoogle Scholar
  21. 21.
    Zhang, Y.: Bounded gaps between primes. Ann. Math. 179, 1121–1174 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Centro P.RI.ST.EM, Università Commerciale Luigi Bocconi 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly

Personalised recommendations