Lettera Matematica

, Volume 5, Issue 4, pp 305–311 | Cite as

The paradox of Vito Volterra’s predator-prey model



The aim of this article is to propose on the one hand a brief history of modelling starting from the works of Fibonacci, Robert Malthus, Pierre Francis Verhulst and then Vito Volterra and, on the other hand, to present the main hypotheses of the very famous but very little known predator-prey model elaborated in the 1920s by Volterra in order to solve a problem posed by his son-in-law, Umberto D’Ancona. It is thus shown that, contrary to a widely-held notion, Volterra’s model is realistic and his seminal work laid the groundwork for modern population dynamics and mathematical ecology, including seasonality, migration, pollution and more.


Vito Volterra Population dynamics Predator-prey model Alfred Lotka Henri Poincaré Malthusian growth Holling function 



I wish to express my sincerest thanks to my friend Christian Gérini, Agrégé de Mathématiques and Docteur en Histoire des Sciences, who encouraged and supported me in my work.


  1. 1.
    Darwin, C.: The origin of the species. W. Clowes & Sons, London (1859)Google Scholar
  2. 2.
    Fibonacci, L.: Liber abaci. In: A translation into modern english of Leonardo Pisano’s book of calculation. Springer-Verlag, New York (2004)Google Scholar
  3. 3.
    Frontier, S., Pichod-Viale, D.: Ecosystèmes, structure, fonctionnement, évolution. Dunod, Paris (2001)Google Scholar
  4. 4.
    Gause, G.F.: The struggle for existence. Williams and Wilkins, Baltimore (1935)Google Scholar
  5. 5.
    Gause, G.F.: Vérifications expérimentales de la théorie mathématique de la lutte pour la vie. Hermann, Paris (1935)Google Scholar
  6. 6.
    Ginoux, J.M.: Analyse mathématiques des phénomènes oscillatoires non linéaires. Université de Paris VI, Thèse (2011)Google Scholar
  7. 7.
    Ginoux, J.M.: Histoire de la théorie des oscillations non linéaires. Hermann, Paris (2015)MATHGoogle Scholar
  8. 8.
    Ginoux, J.M.: History of nonlinear oscillations theory in France (1880-1940). Archimedes Series, Vol. 49, Springer International Publishing, Cham (2017)Google Scholar
  9. 9.
    Gompertz, B.: On the nature of the function expressive of the Law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Trans. R. Soc. London 123, 513–585 (1832)Google Scholar
  10. 10.
    Guerraggio, A., Paolini, P.: Vito Volterra. Trans. Kim Williams. Springer-Verlag, Berlin (2013)CrossRefGoogle Scholar
  11. 11.
    Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)CrossRefGoogle Scholar
  12. 12.
    Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)CrossRefGoogle Scholar
  13. 13.
    Israel, G.: Volterra’s analytical mechanics of biological associations. Arch. Int. Hist. Sci. 41, 57–104, 307–352 (1991)Google Scholar
  14. 14.
    Israel, G.: The emergence of biomathematics and the case of population dynamics: a revival of mechanical reductionism and darwinism. Sci. in Context 6, 469–509 (1993)CrossRefGoogle Scholar
  15. 15.
    Israel, G.: La mathématisation du réel : essai sur la modélisation mathématique. Seuil, Paris (1996)Google Scholar
  16. 16.
    Israel, G., Millàn Gasca, A.: The biology of numbers. The Correspondence of Vito Volterra on Mathematical Biology. Birkhäuser, Boston (2002)Google Scholar
  17. 17.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer-Verlag, Berlin (1998)MATHGoogle Scholar
  18. 18.
    Lotka, A.: Elements of physical biology. Williams & Wilkins Co, Baltimore (1925)MATHGoogle Scholar
  19. 19.
    Lotka, A.: Fluctuations in the abundance of a species considered mathematically. Nature 119, 12 (1927)Google Scholar
  20. 20.
    Malthus, T.R.: An essay on the principle of population. printed for J. Johnson, in St. Paul’s Church-Yard, London (1798)Google Scholar
  21. 21.
    Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1913)Google Scholar
  22. 22.
    Pearl, R., Reed, L.J.: On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Science (USA) 6, 275–288, (1920)Google Scholar
  23. 23.
    Poincaré, H.: Sur les courbes définies par une équation différentielle. Journal de mathématiques pures et appliquées, série III 8, 251–296 (1882)MATHGoogle Scholar
  24. 24.
    Real, L.: The kinetics of functional response. American Naturalist 111, 289–300 (1977)CrossRefGoogle Scholar
  25. 25.
    Rosenzweig, M., MacArthur, R.: Graphical representation and stability conditions of Predator-prey interaction. American Naturalist 97, 209–223 (1963)CrossRefGoogle Scholar
  26. 26.
    Scudo, F.M., Ziegler, J.R.: The Golden Age of Theoretical Ecology: 1923–1940. Springer-Verlag, Berlin (1978)MATHGoogle Scholar
  27. 27.
    Van der Pol, B.: On ’Relaxation-Oscillations’. Phil. Mag. 2(7), 978–992 (1926)Google Scholar
  28. 28.
    Verhulst, P.F.: Notice sur la loi que suit la population dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)Google Scholar
  29. 29.
    Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Lincei 2, 31–113 (1926)MATHGoogle Scholar
  30. 30.
    Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)CrossRefMATHGoogle Scholar
  31. 31.
    Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 119, 12–13 (1927)Google Scholar
  32. 32.
    Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. Translated by Miss Mary Evelyn Wells. ICES J. Mar. Sci. 3, 3–51 (1928)CrossRefGoogle Scholar
  33. 33.
    Volterra, V.: Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris (1931)MATHGoogle Scholar

Copyright information

© Centro P.RI.ST.EM, Università Commerciale Luigi Bocconi 2017

Authors and Affiliations

  1. 1.Laboratoire LSIS, CNRS, UMR 7296Université de ToulonLa Garde CedexFrance
  2. 2.Archives Henri PoincaréUniversité de de Lorraine, CNRS, UMR 7117Nancy CedexFrance

Personalised recommendations