Acta Geodaetica et Geophysica

, Volume 53, Issue 2, pp 171–187 | Cite as

An improved torque type gravity gradiometer with dynamic modulation

  • Jie Luo
  • Jia-Hao Xu
  • Qi Liu
  • Cheng-Gang Shao
  • Lin Zhu
  • Hui-Hui Zhao
  • Wei-Huang Wu
Original Study


Traditional torque type gravity gradiometer has an important pole in gravity gradient measurements, while it is relatively inefficient and with the precision of about 1 E mainly caused by the static operating mode. In this paper, we develop an improved torque type gravity gradiometer to improve the measuring efficiency, which is based on the dynamic modulation. The dynamic modulation keeps the gradiometer rotating on a turntable steadily, measures the deflection angle of the torsion pendulum continuously and then obtains the gravity gradients. The result shows that after using the improved gradiometer, the gradients W xz and W yz are obtained with precisions of 0.45 E and 0.32 E respectively in a cycle of 20 min.


Improved torque type gradiometer Dynamic modulation Measuring efficiency Gravity gradient 



This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11575160, 91636221, 11605065).


  1. Barton DC (1931) Gravity measurements with the Eotvos torsion balance. Consulting Geologist and Geophysicist, Houston, Texas. Physics of the Earth 77:167–188Google Scholar
  2. Bell RE, Hansen RO (1998) The rise and fall of early oil field technology: the torsion balance gradiometer. Lead Edge 17(1):81–83CrossRefGoogle Scholar
  3. Choi KY (2006) A new equivalence principle test using a rotating torsion balance. Ph.DGoogle Scholar
  4. Dehlinger P (1978) Marine gravity, vol 22. Elsevier, AmsterdamGoogle Scholar
  5. DiFrancesco D, Grierson A, Kaputa D, Meyer T (2009) Gravity gradiometer systems—advances and challenges. Geophys Prospect 57(4):615–623CrossRefGoogle Scholar
  6. ELCOMAT 3000, Germany Moeller-Wedel Optical GmbH.
  7. Goodfellow Cambridge Limited, Huntingdon PE29 6WR, England.
  8. Gundlach JH, Smith GL, Adelberger EG, Heckel BR, Swanson HE (1997) Short-range test of the equivalence principle. Phys Rev Lett 78(13):2523CrossRefGoogle Scholar
  9. Kirkup L, Frenkel RB (2006) An introduction to uncertainty in measurement: using the GUM (guide to the expression of uncertainty in measurement). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Lancaster-Jones E (1932) The principles and practice of the gravity gradiometer. J Sci Instrum 9(11):341CrossRefGoogle Scholar
  11. Landau LD (ed.) (2013) The classical theory of fields, vol 2. Elsevier, Amsterdam Google Scholar
  12. Luo J, Shao CG, Tian Y, Wang DH (2013) Thermal noise limit in measuring the gravitational constant G using the angular acceleration method and the dynamic deflection method. Phys Lett A 377(21):1397–1401CrossRefGoogle Scholar
  13. Quinn BG (1994) Estimating frequency by interpolation using Fourier coefficients. IEEE Trans Signal Process 42(5):1264–1268CrossRefGoogle Scholar
  14. Rankine AO (1932) On the representation and calculation of the results of gravity surveys with torsion balances. Proc Phys Soc 44(4):465CrossRefGoogle Scholar
  15. Saulson PR (1990) Thermal noise in mechanical experiments. Phys Rev D 42(8):2437CrossRefGoogle Scholar
  16. Schweydar W (1918) Die Bedeutung der Drehwaage von Eötvös für die geologische Forschung nebst Mitteilung der Ergebnisse einiger Messungen. Zeitschrift für praktische Geologie 26:157–162Google Scholar
  17. Shaw H, Lancaster-Jones E (1922) The Eötvös torsion balance. Proc Phys Soc Lond 35(1):151CrossRefGoogle Scholar
  18. SP-400, Shanghai Shanjin Vacuum Equipment Co., Ltd., Shanghai, ChinaGoogle Scholar
  19. Su Y (1992) A new test of the weak equivalence principle. Ph.DGoogle Scholar
  20. Szabó Z (2016) The history of the 125 year old Eötvös torsion balance. Acta Geod Geoph 51(2):273–293CrossRefGoogle Scholar
  21. Tu LC, Li Q, Wang QL, Shao CG, Yang SQ, Liu LX, Liu Q, Luo J (2010) New determination of the gravitational constant G with time-of-swing method. Phys Rev D 82(2):022001CrossRefGoogle Scholar
  22. Völgyesi L (2001) Local geoid determination based on gravity gradients. Acta Geodaetica et Geophysica Hungarica 36(2):153–162CrossRefGoogle Scholar
  23. Völgyesi L (2015) Renaissance of torsion balance measurements in Hungary. Periodica Polytechnica Civ Eng 59(4):459CrossRefGoogle Scholar
  24. Völgyesi L, Ultmann Z (2012) Reconstruction of a torsion balance and the results of the test measurements. In: Kenyon SC, Pacino MC, Marti UJ (eds) Geodesy for planet earth. Springer, Berlin, pp 281–289CrossRefGoogle Scholar
  25. Zhou MK, Duan XC, Chen LL, Luo Q, Xu YY, Hu ZK (2015) Micro-Gal level gravity measurements with cold atom interferometry. Chin Phys B 24(5):050401CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2017

Authors and Affiliations

  1. 1.School of Mechanical Engineering and Electronic InformationChina University of GeosciencesWuhanChina
  2. 2.TIANQIN Research Center for Gravitational Physics, School of Physics and AstronomySun Yat-sen UniversityZhuhaiChina
  3. 3.MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations