Skip to main content
Log in

An improved torque type gravity gradiometer with dynamic modulation

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Traditional torque type gravity gradiometer has an important pole in gravity gradient measurements, while it is relatively inefficient and with the precision of about 1 E mainly caused by the static operating mode. In this paper, we develop an improved torque type gravity gradiometer to improve the measuring efficiency, which is based on the dynamic modulation. The dynamic modulation keeps the gradiometer rotating on a turntable steadily, measures the deflection angle of the torsion pendulum continuously and then obtains the gravity gradients. The result shows that after using the improved gradiometer, the gradients W xz and W yz are obtained with precisions of 0.45 E and 0.32 E respectively in a cycle of 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barton DC (1931) Gravity measurements with the Eotvos torsion balance. Consulting Geologist and Geophysicist, Houston, Texas. Physics of the Earth 77:167–188

    Google Scholar 

  • Bell RE, Hansen RO (1998) The rise and fall of early oil field technology: the torsion balance gradiometer. Lead Edge 17(1):81–83

    Article  Google Scholar 

  • Choi KY (2006) A new equivalence principle test using a rotating torsion balance. Ph.D

  • Dehlinger P (1978) Marine gravity, vol 22. Elsevier, Amsterdam

    Google Scholar 

  • DiFrancesco D, Grierson A, Kaputa D, Meyer T (2009) Gravity gradiometer systems—advances and challenges. Geophys Prospect 57(4):615–623

    Article  Google Scholar 

  • ELCOMAT 3000, Germany Moeller-Wedel Optical GmbH. https://www.haag-streit.com/de/moeller-wedel-optical/

  • Goodfellow Cambridge Limited, Huntingdon PE29 6WR, England. http://www.goodfellow.com/contact-us/

  • Gundlach JH, Smith GL, Adelberger EG, Heckel BR, Swanson HE (1997) Short-range test of the equivalence principle. Phys Rev Lett 78(13):2523

    Article  Google Scholar 

  • Kirkup L, Frenkel RB (2006) An introduction to uncertainty in measurement: using the GUM (guide to the expression of uncertainty in measurement). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lancaster-Jones E (1932) The principles and practice of the gravity gradiometer. J Sci Instrum 9(11):341

    Article  Google Scholar 

  • Landau LD (ed.) (2013) The classical theory of fields, vol 2. Elsevier, Amsterdam

  • Luo J, Shao CG, Tian Y, Wang DH (2013) Thermal noise limit in measuring the gravitational constant G using the angular acceleration method and the dynamic deflection method. Phys Lett A 377(21):1397–1401

    Article  Google Scholar 

  • Quinn BG (1994) Estimating frequency by interpolation using Fourier coefficients. IEEE Trans Signal Process 42(5):1264–1268

    Article  Google Scholar 

  • Rankine AO (1932) On the representation and calculation of the results of gravity surveys with torsion balances. Proc Phys Soc 44(4):465

    Article  Google Scholar 

  • Saulson PR (1990) Thermal noise in mechanical experiments. Phys Rev D 42(8):2437

    Article  Google Scholar 

  • Schweydar W (1918) Die Bedeutung der Drehwaage von Eötvös für die geologische Forschung nebst Mitteilung der Ergebnisse einiger Messungen. Zeitschrift für praktische Geologie 26:157–162

    Google Scholar 

  • Shaw H, Lancaster-Jones E (1922) The Eötvös torsion balance. Proc Phys Soc Lond 35(1):151

    Article  Google Scholar 

  • SP-400, Shanghai Shanjin Vacuum Equipment Co., Ltd., Shanghai, China

  • Su Y (1992) A new test of the weak equivalence principle. Ph.D

  • Szabó Z (2016) The history of the 125 year old Eötvös torsion balance. Acta Geod Geoph 51(2):273–293

    Article  Google Scholar 

  • Tu LC, Li Q, Wang QL, Shao CG, Yang SQ, Liu LX, Liu Q, Luo J (2010) New determination of the gravitational constant G with time-of-swing method. Phys Rev D 82(2):022001

    Article  Google Scholar 

  • Völgyesi L (2001) Local geoid determination based on gravity gradients. Acta Geodaetica et Geophysica Hungarica 36(2):153–162

    Article  Google Scholar 

  • Völgyesi L (2015) Renaissance of torsion balance measurements in Hungary. Periodica Polytechnica Civ Eng 59(4):459

    Article  Google Scholar 

  • Völgyesi L, Ultmann Z (2012) Reconstruction of a torsion balance and the results of the test measurements. In: Kenyon SC, Pacino MC, Marti UJ (eds) Geodesy for planet earth. Springer, Berlin, pp 281–289

    Chapter  Google Scholar 

  • Zhou MK, Duan XC, Chen LL, Luo Q, Xu YY, Hu ZK (2015) Micro-Gal level gravity measurements with cold atom interferometry. Chin Phys B 24(5):050401

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11575160, 91636221, 11605065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Liu or Cheng-Gang Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Xu, JH., Liu, Q. et al. An improved torque type gravity gradiometer with dynamic modulation. Acta Geod Geophys 53, 171–187 (2018). https://doi.org/10.1007/s40328-017-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-017-0202-z

Keywords

Navigation