SeMA Journal

, Volume 75, Issue 1, pp 95–109 | Cite as

Local convergence of Newton-HSS methods with positive definite Jacobian matrices under generalized conditions

  • Ioannis K. Argyros
  • Janak Raj Sharma
  • Deepak Kumar


We study the local convergence of Newton-HSS method and modified Newton-HSS method to approximate a locally unique solution of a nonlinear equation under generalized conditions. Our conditions when specialized to Lipschitz conditions considered in earlier studies provide tighter error estimates on the distances involved and a larger radius of convergence leading to fewer iterates to achieve a desired error tolerance and a wider choice of initial guesses. Hence, the applicability of the methods is expanded. Finally, numerical tests are also performed to show that our results apply to solve equations in cases where earlier study cannot apply.


Newton-HSS method Local convergence System of nonlinear equations Generalized Lipschitz conditions 

Mathematics Subject Classification

65F10 65W05 


  1. 1.
    Amat, S., Busquier, S., Plaza, S., Guttérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69, 212–223 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, New York (2008)MATHGoogle Scholar
  5. 5.
    Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. World Scientific Publishing Company, New Jersey (2013)CrossRefMATHGoogle Scholar
  6. 6.
    Argyros, I.K., Magreñán, Á.A.: Ball convergence theorems and the convergence planes of an iterative methods for nonlinear equations. SeMa 71, 39–55 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Argyros, I.K., Sharma, J.R., Kumar, D.: Ball convergence of the Newton–Gauss method in Banach space. SeMa (2016). doi: 10.1007/s40324-016-0091-z
  8. 8.
    Axelsson, O.: A generalized conjugate gradient, least square method. Numer. Math. 51, 209–227 (1987)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bai, Z.-Z.: A class of two-stage iterative methods for system of weakly nonlinear equations. Numer. Algorithms 14, 295–319 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bai, Z.-Z., Guo, X.-P.: On Newton-HSS methods for systems of nonlinear equations with positive definite Jacobian matrices. J. Comput. Math. 28, 235–260 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput. Math. Appl. 32, 51–76 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cordero, A., Ezquerro, J.A., Hernández-Veron, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)MathSciNetMATHGoogle Scholar
  15. 15.
    Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ezquerro, J.A., Hernández, M.A.: A uniparametric Halley-type iteration with free second derivative. Int. J. Pure. Appl. Math. 6, 99–110 (2003)MathSciNetMATHGoogle Scholar
  17. 17.
    Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Guo, X.-P.: On semilocal convergence of inexact Newton methods. J. Comput. Math. 25, 231–242 (2007)MathSciNetMATHGoogle Scholar
  19. 19.
    Hernández, M.A., Martínez, E.: On the semilocal convergence of a three steps Newton-type process under mild convergence conditions. Numer. Algorithms 70, 377–392 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)CrossRefMATHGoogle Scholar
  21. 21.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)MATHGoogle Scholar
  22. 22.
    Wu, Q.-B., Chen, M.-H.: Convergence analysis of modified Newton-HSS method for solving systems of nonlinear equations. Numer. Algorithms 64, 659–683 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2017

Authors and Affiliations

  • Ioannis K. Argyros
    • 1
  • Janak Raj Sharma
    • 2
  • Deepak Kumar
    • 2
  1. 1.Department of Mathematics SciencesCameron UniversityLawtonUSA
  2. 2.Department of MathematicsSant Longowal Institute of Engineering and TechnologyLongowal, SangrurIndia

Personalised recommendations