Skip to main content
Log in

On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case

  • Published:
SeMA Journal Aims and scope Submit manuscript

A Correction to this article was published on 18 June 2018

This article has been updated

Abstract

We start by pointing out an important ambiguity in the mathematical treatment of the study of bound state solutions of the Schrödinger equation for infinite well type potentials (studied for the first time in a pioneering article of 1928 by G. Gamow). An alternative to get a “localizing effect” for the wave packet solution of time dependent Schrödinger equation with potentials becoming singular on the boundary of a compact region \(\overline{\Omega }\) is here offered in terms of “ Hardy type potentials” in which the potential behaves like the distance to the boundary to the power \(\alpha =-2.\) We show that in this case the probability to find the particle outside \(\Omega \) is zero once we assume that at \(t=0\) the particle is located in \(\Omega \). The paper extends to the N-dimensional and evolution cases some previous results by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 18 June 2018

    We show that the existence of flat solutions for the Schrödinger equation with super-singular potentials

References

  1. Andreu, F., Caselles, V., Díaz, J.I., Mazón, J.M.: Some qualitative properties for the total variation flow. J. Funct. Anal. 188, 516–547 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S., Díaz, J.I., Shmarev, S.: Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Series Progress in Nonlinear Differential Equations and Their Applications, No. 48, Birkäuser, Boston (2002)

  3. Bandle, C., Moroz, V., Reichel, W.: Large Solutions to Semilinear Elliptic Equations with Hardy Potential and Exponential Nonlinearity. In: Around the Research of Vladimir Maz’ya II, Partial Differential Equations, Springer, New York, pp. 1–22 (2010)

  4. Bandle, C., Pozio, M.A.: Sublinear elliptic problems with a Hardy potential. Nonlinear Anal. 119, 149–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bégout, P., Diaz, J.I.: On a nonlinear Schrödinger equation with a localizing effect. Comptes Rendus Acad. Sci. Paris, t. 342(Serie I), 459–463 (2006)

  6. Bégout, P., Diaz, J.I.: Localizing estimates of the support of solutions of some nonlinear Schrödinger equations: the stationary case. Ann. Inst. Henri Poincare (C) Non Linear Anal. 29, 35–58 (2012)

    Article  MATH  Google Scholar 

  7. Bégout, P., Diaz, J.I.: A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity. Discr. Contin. Dyn. Syst. Ser. A 34(9), 3371–3382 (2014)

    Article  MATH  Google Scholar 

  8. Bégout, P., Diaz, J.I.: Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations. Electron. J. Differ. Equ. 2014(90), 1–15 (2014)

    MATH  Google Scholar 

  9. Bégout, P., Diaz, J.I.: Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity. Rev. R. Acad. Cien. Ser A. Mat. (RACSAM) 109(1), 43–63 (2015)

  10. Belloni, M., Robinett, R.W.: The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics. Phys. Rep. 540, 25–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertsch, M., Rostamian, R.: The principle of linearized stability for a class of degenerate diffusion equations. J. Differ. Equ. 57, 373–405 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  13. Brezis, H., Cabré, X.: Some simple nonlinear PDE’s without solutions. Bollettino dell’Unione Matematica Italiana Serie 8(1-B), 223–262 (1998)

  14. Brezis, H., Cazenave, T.: Linear Semigroups of Contractions: The Hille–Yosida Theory and Some Applications. Publications du Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris (1993)

    Google Scholar 

  15. Brezis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pure Appl. 58, 137–151 (1979)

    MATH  Google Scholar 

  16. Cabré, X., Martel, Y.: Weak eigenfunctions for the linearization of extremal elliptic problems. J. Funct. Anal. 156(1), 30–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 267–385 (1975)

  18. Coutinho, F.A.B., Wreszinski, W.F.: Instantaneous spreading versus space localization for nonrelativistic quantum systems. Br. J. Phys. 46, 462–470 (2016)

    Article  Google Scholar 

  19. Cavalheiro, A.C.: Existence of entropy solutions for degenerate quasilinear elliptic equations in L\(^{1}\). Commun. Math. 22, 57–69 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Cowling, M., Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: The hardy uncertainty principle revisited. Indiana U. Math. J. 59(6), 2007–2026 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Research Notes in Mathematics, vol. 106. Pitman, London (1985)

    MATH  Google Scholar 

  22. Díaz, J.I.: On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via flat solutions: the one-dimensional case. Interf. Free Bound. 17, 333–351 (2015)

    Article  MATH  Google Scholar 

  23. Díaz, J.I.: On the existence of large solutions for linear elliptic equations with a Hardy absorption potential. To appear

  24. Díaz, J.I.: Decaying to zero bifurcation solution curve for some sublinear elliptic eigenvalue type problems. Revista de la Real Academia Canaria de Ciencias to appear

  25. Díaz, J.I., Glowinski, R., Guidoboni, G., Kim, T.: Qualitative properties and approximation of solutions of Bingham flows: on the stabilization for large time and the geometry of the support. Rev. R. Acad. Cient. Ser. A. Mat RACSAM 104(1), 157–200 (2010)

  26. Díaz, J.I., Gómez -Castro, D., Rakotoson, J.M., Temam, R.: Linear equation with unbounded coefficients on the weighted space. To appear

  27. Díaz, J.I., Hernández, J.: Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem. Comptes Rendus Acad. Sci. Paris 329(Série I), 587–592 (1999)

  28. Díaz, J.I., Hernández, J.: Positive and nodal solutions bifurcating from the infinity for a semilinear equation: solutions with compact support. Portugal. Math. 72(2), 145–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Díaz, J.I., Hernández, J.: Linearized stability for degenerate semilinear and quasilinear parabolic problems: the linearized singular equations. Preprint (2017)

  30. Díaz, J.I., Hernández, J., Ilyasov, Y.: On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption. Nonlinear Anal. Ser. A: Theory Methods Appl. 119, 484–500 (2015)

  31. Díaz, J.I., Hernández, J., Mancebo, F.: Nodal solutions bifurcating from infinity for some singular p-Laplace equations: flat and compact support solutions. Minimax Theory Appl. 2, 27–40 (2017)

  32. Díaz, J.I., Hernández, J., Il.yasov, Y.: Stability criteria on flat and compactly supported ground states of some non-Lipschitz autonomous semilinear equations. Chin. Ann. Math. 38, 345–378 (2017)

  33. Díaz, J.I., Rakotoson, J.-M.: On very weak solutions of semilinear elliptic equations with right hand side data integrable with respect to the distance to the boundary. Discr. Contin. Dyn. Syst. 27, 1037–1058 (2010)

    Article  MATH  Google Scholar 

  34. Drábek, P., Hernández, J.: Quasilinear eigenvalue problems with singular weights for the p-Laplacian. To appear

  35. Drábek, P., Kufnert, A.: Hardy inequality, compact embeddings and properties of certain eigenvalue problems. To appear in Rend. Ist. Mat. Univ. Trieste (special volume dedicated to Jean Mawhin)

  36. Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations and Degenerations and Singularities. De Gruyter, Berlin (1997)

    Book  MATH  Google Scholar 

  37. Frank, W.M., Land, D.J.: Singular potentials. Rev. Mod. Phys. 43(1), 36–98 (1971)

    Article  MathSciNet  Google Scholar 

  38. Galindo, A.: Propagación instantánea en los sistemas cuánticos. Anales de la Soc. Esp. Física y Quí m., serie A Física. 64 (A), 141–147 (1968)

  39. Galindo, A., Pascual, P.: Quantum Mechanics I. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  40. Gamow, G.: Zur Quantentheorie des Atomkernes. Zeitschrift für Physik 51(204), 204–212 (1928)

    Article  MATH  Google Scholar 

  41. Glügge, S.: Practical Quantuum Muchanics. Springer, Berlin (1999)

    Google Scholar 

  42. Hauke, P., Tagliacozzo, L.: Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111(207202), 1–6 (2013)

    Google Scholar 

  43. Hegerfeldt, G.C.: Instantaneous spreading and einstein causality in quantum theory. Ann. Phys. 7, 716–725 (1998)

    Article  MATH  Google Scholar 

  44. Hegerfeldt, G.C., Ruijsenaars, S.N.M.: Remarks on causality, localization, and spreading of wave packets. Phys. Rev. D 2.2(2), 377–384 (1980)

  45. Kaper, H., Kwong, M.: Free boundary problems for Emden–Fowler equation. Differ. Integr. Equ. 3, 353–362 (1990)

    MathSciNet  MATH  Google Scholar 

  46. Kaper, H., Kwong, M., Li, Y.: Symmetry results for reaction-diffusion equations. Differ. Integr. Equ. 6, 1045–1056 (1993)

    MathSciNet  MATH  Google Scholar 

  47. Kufner, A.: Weighted Sobolev Spaces. Teubner-Texte zur Math, vol. 31. Teubner Verlagsgesellschaft, Leipzig (1980)

    MATH  Google Scholar 

  48. Mott, N.F.: An Outline of Wave Mechanics. Cambridge University Press, Cambridge (1930)

    MATH  Google Scholar 

  49. Pöschl, G., Teller, E.: Bemerkungen zur Quantenmechanik des Anharmonischen Oszillators. Z. Phys. 83(3,4), 143–151 (1933)

  50. Protter, M.H., Weimberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  Google Scholar 

  51. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1975)

    MATH  Google Scholar 

  52. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. III. Academic Press, New York (1979)

    MATH  Google Scholar 

  53. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, New York (1979)

    MATH  Google Scholar 

  54. Sánchez del Río, C.: Física Cuántica, 6th edn. Piramide, Madrid (2016)

    Google Scholar 

  55. Strauss, W.: Partial Differential Equations. An Introduction. Wiley, New York (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

Research partially supported by the project Ref.MTM2014-57113-P of the DGISPI (Spain) and the Research Group MOMAT (Ref. 910480) supported by the Universidad Complutense de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Ildefonso Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, J.I. On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case. SeMA 74, 255–278 (2017). https://doi.org/10.1007/s40324-017-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-017-0115-3

Keywords

Mathematics Subject Classification

Navigation