Orthogonal cubic spline basis and its applications to a partial integro-differential equation with a weakly singular kernel

Abstract

In this paper, a new orthogonal basis for the space of cubic splines has been introduced. This basis is obtained based on B-splines and using the Gram–Schmidt orthogonalization process. A linear combination of these basis is used to estimate functions and numerical solutions of a partial integro-differential equation with a weakly singular kernel. The convergence analysis in the approximate scheme is investigated. The accuracy of the proposed method is demonstrated by three test problems. The results of numerical experiments are compared with analytical solutions by calculating errors \(L_2\)-norm, \(L_\infty \)-norm and \(H^1\)-norm. The numerical results are found to be in good agreement with the exact solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguilar M, Brunner H (1988) Collocation methods for second-order Volterra integro-differential equations. Appl Numer Math 4:455–470

    MathSciNet  Article  Google Scholar 

  2. Aminikhah H, Alavi J (2017) B-spline collocation and quasi-interpolation methods for boundary layer flow and convection heat transfer over a flat plate. Calcolo 54(1):299–317

    MathSciNet  Article  Google Scholar 

  3. Biazar J, Asadi MA (2015) FD-RBF for partial integro-differential equations with a weakly singular kernel. Appl Comput Math 4(6):445–451

    Article  Google Scholar 

  4. Brunner H (1987) Implicit Runge–Kutta–Nyström methods for general second-order Volterra integro-differential equations. Comput Math Appl 14:549–559

    MathSciNet  Article  Google Scholar 

  5. Brunner H, Makroglou A, Miller RK (1997) Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution. Appl Numer Math 23:381–402

    MathSciNet  Article  Google Scholar 

  6. Christensen RM (1971) Theory of viscoelasticity. Academic Press, New York

    Google Scholar 

  7. De Boor C (2001) A practical guide to splines. Springer, New York

    Google Scholar 

  8. Dehghan M (2006) Solution of a partial integro–differential equation arising from viscoelasticity. Int J Comput Math 83:123–129

    MathSciNet  Article  Google Scholar 

  9. Devore RA, Lorentz GG (1993) Constructive approximation. Springer, New York

    Google Scholar 

  10. Elnagar GN, Kazemi M (1996) Chebyshev spectral solution of nonlinear Volterra–Hammerstein integral equations. J Comput Appl Math 76:147–158

    MathSciNet  Article  Google Scholar 

  11. Fahim A, Araghi MAF, Rashidinia1 J, Jalalvand M (2017) Numerical solution of Volterra partial integro-differential equations based on sinc-collocation method. Adv Differ Equations. https://doi.org/10.1186/s13662-017-1416-7

  12. Fujiwara H (2003) High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic. Theor Appl Mech Jpn 52:193–203

    Google Scholar 

  13. Gholamian M, Saberi-Nadjafi J, Soheili AR (2019) Cubic B-splines collocation method for solving a partial integrodifferential equation with a weakly singular kernel. Comput Methods Differ Equations 7(3):497–510

    MathSciNet  MATH  Google Scholar 

  14. Gurtin ME, Pipkin AC (1968) A general theory of heat conduction with finite wave speed. Arch Ration Mech Anal 31:113–126

    MathSciNet  Article  Google Scholar 

  15. Khuri SA, Sayfy A (2010) A spline collocation approach for a generalized wave equation subject to non-local conservation condition. Appl Math Comput 217(8):3993–4001

    MathSciNet  MATH  Google Scholar 

  16. Liu Q, Gu Y, Zhuang P, Liu F, Nie Y (2011) An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech 48:1–12

    MathSciNet  Article  Google Scholar 

  17. Long W, Xu D, Zeng X (2012) Quasi wavelet based numerical method for a class of partial integro–differential equation. Appl Math Comput 218:11842–11850

    MathSciNet  MATH  Google Scholar 

  18. Luo M, Xu D, Li L (2015) A compact difference scheme for a partial integro–differential equation with a weakly singular kernel. Appl Math Model 39(2):947–954

    MathSciNet  Article  Google Scholar 

  19. Mason JC, Rodriguez G, Seatzu S (1993) Orthogonal splines based on B-splines with applications to least squares, smoothing and regularisation problems. Numer Algorithms 5:25–40

    MathSciNet  Article  Google Scholar 

  20. Mirzaee F, Alipour S (2020) Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order. J Comput Appl Math 366:112440

    MathSciNet  Article  Google Scholar 

  21. Mohebbi A (2017) Compact finite difference scheme for the solution of a time fractional partial integro-differential equation with a weakly singular kernel. Math Methods Appl Sci. https://doi.org/10.1002/mma.4549

  22. Qiao L, Wang Z, Xu D (2020a) An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl Numer Math 151:199–212

    MathSciNet  Article  Google Scholar 

  23. Qiao L, Xu D, Yan Y (2020b) High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math Methods Appl Sci. https://doi.org/10.1002/mma.6258.

  24. Renardy M (2000) Mathematical analysis of viscoelastic flows. SIAM, Philadelphia

    Google Scholar 

  25. Tang T (1993) A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl Numer Math 11:309–319

    MathSciNet  Article  Google Scholar 

  26. Tang T (2008) On spectral methods for Volterra integral equations and the convergence analysis. J Comput Math 26:825–837

    MathSciNet  MATH  Google Scholar 

  27. Vasudeva Murthy AS, Verwer JG (1992) Solving parabolic integro-differential equations by an explicit integration method. J Comput Appl Math 39:121–132

    MathSciNet  Article  Google Scholar 

  28. Yanik EG, Fairweather G (1988) Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal 12:785–809

    MathSciNet  Article  Google Scholar 

  29. Zhang H, Yang X (2018) The BDF orthogonal spline collocation method for the two dimensional evolution equation with memory. Int J Comput Math 95(10):2011–2025

    MathSciNet  Article  Google Scholar 

  30. Zhang H, Yang X, Tang Q (2020) Discrete-time orthogonal spline collocation method for a modified anomalous diffusion equation. Int J Comput Math. https://doi.org/10.1080/00207160.2020.1741556

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Aminikhah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Hui Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alavi, J., Aminikhah, H. Orthogonal cubic spline basis and its applications to a partial integro-differential equation with a weakly singular kernel. Comp. Appl. Math. 40, 55 (2021). https://doi.org/10.1007/s40314-021-01442-5

Download citation

Keywords

  • Orthogonal cubic spline basis function
  • B-spline
  • Gram–Schmidt process
  • Partial integro-differential equation
  • Weakly singular kernel

Mathematics Subject Classification

  • 65D07
  • 47G20
  • 41A15