\({H_\infty }\)/passive synchronization for complex dynamical networks with semi-Markovian jump and coupling time-varying delays based on sampled-data control

Abstract

This paper investigates \({H_\infty }\)/passive synchronization for a class of complex dynamical networks with semi-Markovian jump and coupling time-varying delays based on sampled-data control. The main purpose is to design a sampled-data controller, using discrete controller approach, to ensure \({H_\infty }\)/passive synchronization of the closed-loop error system. By constructing a novel Lyapunov–Krasovskii functional, in which the characteristics of the sampled-data are fully considered, then combining some integral inequalities, free weighting matrices and convex combination method, we establish the \({H_\infty }\)/passive synchronization criterion for a class of complex dynamical networks with semi-Markovian jump. Moreover, the proposed synchronization criterion can be simplified into the form of linear matrix inequalities using Matlab toolbox. Finally, two numerical examples are given to verify the validity and practicability of the theoretical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Du H, Shi P, Ning L (2013) Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal Real World Appl 14(2):1182–1190

    MathSciNet  MATH  Article  Google Scholar 

  2. Fu L, Ma Y (2016) Passive control for singular time-delay system with actuator saturation. Appl Math Comput 289:181–193

    MathSciNet  MATH  Google Scholar 

  3. Huang X, Ma Y (2018) Finite-time \({H_\infty }\) sampled-data synchronization for Markovian jump complex networks with time-varying delays. Neurocomputing 296:82–99

    Article  Google Scholar 

  4. Huo S, Chen M, Shen H (2017) Non-fragile mixed \({H_\infty }\) and passive asynchronous state estimation for Markov jump neural networks with randomly occurring uncertainties and sensor nonlinearity. Neurocomputing 227:46–53

    Article  Google Scholar 

  5. Kaviarasan B, Sakthivel R, Lim Y (2016) Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory. Neurocomputing 18:127–138

    Article  Google Scholar 

  6. Lee S, Park M, Kwon O (2017) Advanced sampled-data synchronization control for complex dynamical networks with coupling time-varying delays. Inf Sci 420:454–465

    Article  Google Scholar 

  7. Li D, Cao J (2015) Finite-time synchronization of coupled networks with one single time-varying delay coupling. Neurocomputing 166(31):265–270

    Article  Google Scholar 

  8. Liu Y, Ma Y, Wang Y (2018a) Reliable finite-time sliding-mode control for singular time-delay system with sensor faults and randomly occurring nonlinearities. Appl Math Comput 320:341–357

    MathSciNet  MATH  Google Scholar 

  9. Liu Y, Ma Y, Wang Y (2018b) Reliable sliding mode finite-time control for discrete-time singular Markovian jump systems with sensor fault and randomly occurring nonlinearities. Int J Robust Nonlinear Control 28:381–402

    MathSciNet  MATH  Article  Google Scholar 

  10. Li L, Tu Z, Mei J (2016) Finite-time synchronization of complex delayed networks via intermittent control with multiple switched periods. Nonlinear Dyn 85(1):375–388

    MathSciNet  MATH  Article  Google Scholar 

  11. Li S, Zhang J, Tang W (2011) Robust \({H_\infty }\) output feedback control for uncertain complex delayed dynamical networks. Comput Math Appl 62(1):497–505

    MathSciNet  MATH  Article  Google Scholar 

  12. Liu T, Zhao J, Hill D (2009) Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes. Chaos Solitons Fractals 40(3):1506–1519

    MathSciNet  MATH  Article  Google Scholar 

  13. Park P, Lee W (2015) Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J Frankl Inst 352(4):1378–1396

    MathSciNet  MATH  Article  Google Scholar 

  14. Rajavel S, Samidurai R, Cao J (2017) Finite-time non-fragile passivity control for neural networks with time-varying delay. Appl Math Comput 297:145–158

    MathSciNet  MATH  Google Scholar 

  15. Rakkiyappan R, Sakthivel N (2015) Pinning sampled-data control for synchronization of complex networks with probabilistic time-varying delays using quadratic convex approach. Neurocomputing 162:26–40

    Article  Google Scholar 

  16. Rakkiyappan R, Chandrasekar A, Ju H (2014) Exponential synchronization criteria for Markovian jumping neural networks with time-varying delays and sampled-data control. Nonlinear Anal Hybrid Syst 14(2):16–37

    MathSciNet  MATH  Article  Google Scholar 

  17. Rakkiyappan R, Kaviarasan B, Rihan F (2015) Synchronization of singular Markovian jumping complex networks with additive time-varying delays via pinning control. J Frankl Inst 352(8):3178–3195

    MathSciNet  MATH  Article  Google Scholar 

  18. Seuret A, Briat C (2015) Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals. Automatica 55:274–278

    MathSciNet  MATH  Article  Google Scholar 

  19. Shi P, Li F (2015) A survey on Markovian jump systems: modeling and design. Int J Control Autom Syst 13(1):1–16

    MathSciNet  Article  Google Scholar 

  20. Shi P, Liu M, Zhang L (2015) Fault-tolerant sliding mode observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans Ind Electron 62(9):5910–5918

    Article  Google Scholar 

  21. Shi L, Zhu H, Zhong S (2016) Synchronization for time-varying complex networks based on control. J Comput Appl Math 301:178–187

    MathSciNet  MATH  Article  Google Scholar 

  22. Shi P, Li F, Wu L, Lim C (2017) Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans Neural Netw Learn Syst 28(9):2101–2114

    MathSciNet  Google Scholar 

  23. Su L, Shen H (2015) Mixed \({H_\infty }\)/passive synchronization for complex dynamical networks with sampled-data control. Appl Math Comput 259:931–942

    MathSciNet  MATH  Google Scholar 

  24. Sun S, Wei X, Zhang H (2018) Composite fault-tolerant control with disturbance observer for stochastic systems with multiple disturbances. J Frankl Inst 355:4897–4915

    MathSciNet  MATH  Article  Google Scholar 

  25. Theesar S, Ratnavelu K (2014) Synchronization error bound of chaotic delayed neural networks. Nonlinear Dyn 78(4):2349–2357

    MathSciNet  MATH  Article  Google Scholar 

  26. Wang J, Shen H (2014) Passivity-based fault-tolerant synchronization control of chaotic neural networks against actuator faults using the semi-Markov jump model approach. Neurocomputing 143(16):51–56

    Article  Google Scholar 

  27. Wang X, She K, Zhong S (2016) New result on synchronization of complex dynamical networks with time-varying coupling delay and sampled-data control. Neurocomputing 214:508–515

    Article  Google Scholar 

  28. Wang J, Su L, Shen H (2016) Mixed \({H_\infty }\)/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay. J Frankl Inst 354(3):1302–1320

    MathSciNet  MATH  Article  Google Scholar 

  29. Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442

    MATH  Article  Google Scholar 

  30. Wu Z, Shi P, Su H (2013a) Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Trans Cybern 43(6):1796–1806

    Article  Google Scholar 

  31. Wu Z, Shi P, Su H (2013b) Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay. IEEE Trans Neural Netw Learn Syst 24(8):1177–1187

    Article  Google Scholar 

  32. Wu Z, Park J, Su H (2015) Exponential synchronization for complex dynamical networks with sampled-data. Appl Math Comput 259(9):931–942

    MathSciNet  Google Scholar 

  33. Xie Q, Si G, Zhang Y (2016) Finite-time synchronization and identification of complex delayed networks with Markovian jumping parameters and stochastic perturbations. Chaos Solitons Fractals 86:35–49

    MathSciNet  MATH  Article  Google Scholar 

  34. Ye D, Yang X, Su L (2017) Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology. Appl Math Comput 312:36–48

    MathSciNet  MATH  Google Scholar 

  35. Yi J, Wang Y, Xiao Y (2013) Exponential synchronization of complex dynamical networks with markovian jump parameters and stochastic delays and its application to multi-agent systems. Commun Nonlinear Sci Numer Simul 18(5):1175–1192

    MathSciNet  MATH  Article  Google Scholar 

  36. Zhang Z, Shen H, Park J (2015) Finite-time \({H_\infty }\) synchronization for complex networks with semi-Markov jump topology. Commun Nonlinear Sci Numer Simul 24(1–3):40–51

    MathSciNet  MATH  Google Scholar 

  37. Zhang X, Gong C (2015) Further improvement of wirtinger-based integral inequality for systems with time-varying delay. In: Proceedings of the 34th Chinese control control conference, pp 1545–1549

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuechao Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (No. 61273004) and the Natural Science Foundation of Hebei province (No. F2018203099).

Communicated by Luz de Teresa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ma, Y. & Fu, L. \({H_\infty }\)/passive synchronization for complex dynamical networks with semi-Markovian jump and coupling time-varying delays based on sampled-data control. Comp. Appl. Math. 39, 73 (2020). https://doi.org/10.1007/s40314-020-1087-y

Download citation

Keywords

  • \({H_\infty }\)/passive synchronization
  • Complex dynamical networks
  • Semi-Markovian jump
  • Coupling time-varying delays
  • Sampled-data

Mathematics Subject Classification

  • 93C42
  • 93C73