Inverse source in two-parameter anomalous diffusion, numerical algorithms, and simulations over graded time meshes

Abstract

We consider an inverse source two-parameter sub-diffusion model subject to a non-local initial condition. The problem models several physical processes, among them are the microwave heating and light propagation in photoelectric cells. A bi-orthogonal pair of bases is employed to construct a series representation of the solution and a Volterra integral equation for the source term. We develop a stable numerical algorithm, based on discontinuous collocation method, for approximating the unknown time-dependent source term. Due to the singularity of the solution near \(t=0\), a graded mesh is used to maintain optimal convergence rates, both theoretically and numerically. Numerical experiments are provided to illustrate the expected analytical order of convergence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Adams EE, Gelhar LW (1992) Field study of dispersion in heterogeneous aquifer 2. Water Resources Res 28:293–307

    Article  Google Scholar 

  2. Aleroev TS, Kirane M, Malik SA (2013) Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition. Electron J Differ Equ No. 270:1–16

    MATH  Google Scholar 

  3. Amir SZ, Sun S (2018) Physics-preserving averaging scheme based on Grünwald-Letnikov formula for gas flow in fractured media. J Petroleum Sci Eng 163:616–639

    Article  Google Scholar 

  4. Baleanu D, Güvenç ZB, Machado JT (eds) (2010) New Trends in Nanotechnology and Fractional Calculus Applications. Springer

  5. Brunner H (2004) Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge

    Google Scholar 

  6. Brunner H, Pedas A, Vainikko G (1999) The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comput 68:1079–1096

    MathSciNet  Article  Google Scholar 

  7. Cannon JR, Pérez Esteva S, van der Hoek J (1987) A Galerkin procedure for the diffusion equation subject to the specification of mass. SIAM J Nume Anal 24(3):499–515

    MathSciNet  Article  Google Scholar 

  8. Cao Y, Herdman T, Xu Y (2003) A hybrid collocation method for volterra integral equations with weakly singular kernels. SIAM J Numer Anal 41:364–381

    MathSciNet  Article  Google Scholar 

  9. Caponetto R, Dongola G, Fortuna L, Petráš I (2010) Fractional Order Systems: Modeling and Control Applications, volume 72 of World Scientific Series on Nonlinear Science. World Scientific

  10. Chen X, Chen YM (1997) Efficient algorithm for solving inverse source problems of a nonlinear diffusion equation in microwave heating. J Comput Phys 132:374–383

    Article  Google Scholar 

  11. Cusimano N, Gerardo-Giorda L (2018) A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries. J Comput Phys 362:409–424

    MathSciNet  Article  Google Scholar 

  12. Demir A, Kanca F (2015) Ozbilge E (2015) Numerical solution and distinguishability in time fractional parabolic equation. Boundary Value Problems 142

  13. Gumel AB (1999) On the numerical solution of the diffusion equation subject to the specification of mass. Aust Mathe Soc J Ser B Appl Math 40(4):475–483

    MathSciNet  Article  Google Scholar 

  14. Hazanee A, Lesnic D, Ismailov M, Kerimov NB (2019) Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions. Appl Mathe Comput 346:800–815

    MathSciNet  Article  Google Scholar 

  15. Hilfer R editor (2000) Applications of Fractional Calculus in Physics, Singapore, World Scientific

  16. Hilfer R (2000) Fractional diffusion based on Riemann-Liouville fractional derivatives. J Phys Chem B 104(16):3914–3917

    Article  Google Scholar 

  17. Hilfer R Fractional time evolution. In Applications of Fractional Calculus in Physics [15], pages 87–130

  18. Hu X, Zhao L, Shaikh AW (2007) The boundary penalty method for the diffusion equation subject to the specification of mass. Appl Math Comput 186(1):735–748

    MathSciNet  Article  Google Scholar 

  19. Ismailov MI, Çiçek M (2016) Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl Math Modelling 40:4891–4899

    MathSciNet  Article  Google Scholar 

  20. Jin B, Rundell W (2015) A tutorial on inverse problems for anomalous diffusion processes. Inverse Problems 31(3):035003

    MathSciNet  Article  Google Scholar 

  21. Kamocki R (2016) A new representation formula for the Hilfer fractional derivative and its application. J Comput Appl Math 308:39–45

    MathSciNet  Article  Google Scholar 

  22. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and Applications of Fractional Differential Equations, volume 204 of Mathematics Studies. Elsevier, Amsterdam

  23. Klages R, Radons G, Sokolov I (2008) editors. Anomalous Transport: Foundations and Applications. Wiley

  24. Kleefeld A, Vorderwülbecke S, Burgeth B (2018) Anomalous diffusion, dilation, and erosion in image processing. Int J Comput Math 95(6–7):1375–1393

    MathSciNet  Article  Google Scholar 

  25. Linz P (1985) Analytical and numerical methods for Volterra equations. SIAM Studies in Applied Mathematics, SIAM, Philadelphia

  26. Lubich C (2004) Convolution quadrature revisited. BIT Nume Math 44:503–514

    MathSciNet  Article  Google Scholar 

  27. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Google Scholar 

  28. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  Article  Google Scholar 

  29. Michelitsch TM, Collet BA, Riascos AP, Nowakowski AF, Nicolleau FCGA (2017) Fractional random walk lattice dynamics. J Phys A 50(5):055003

    MathSciNet  Article  Google Scholar 

  30. Monje CA, Chen Y, Vinagre BM, Xue D, Feliu V (2010) Fractional-order systems and controls. advances in industrial control. Springer, Berlin

    Google Scholar 

  31. Mustapha K (2013) A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math Comput 82:1987–2005

    MathSciNet  Article  Google Scholar 

  32. Mustapha K, Ryan JK (2013) Post-processing discontinuous Galerkin solutions to Volterra integro-differential equations: Analysis and simulations. J Comput Appl Math 253:89–103

    MathSciNet  Article  Google Scholar 

  33. Ortigueira MD (2011) Fractional Calculus for Scientists and Engineers, vol 84. Lecture Notes in Electrical Engineering. Springer

  34. Özkum G, Demir A, Erman S, Korkmaz E, Özgür B (2013) On the inverse problem of the fractional heat-like partial differential equations: determination of the source function. Advances in Mathematical Physics, Article ID 476154:8 pages

  35. Petrás̆ (2011) Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer

  36. Podlubny I (1999) Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering. Academic Press

  37. Prabhakar TR (1971) A singular integral equation with a generalized mittag-leffler function in the kernel. Yokohama Math J 19:7–15

    MathSciNet  MATH  Google Scholar 

  38. Sakamoto K, Yamamoto M (2011) Inverse source problem with a final overdetermination for a fractional diffusion equation. Math Control Related Fields 1(4):509–518

    MathSciNet  Article  Google Scholar 

  39. Wang N, Zhou H, Chen H, Xia M, Wang S, Fang J, Sun P (2018) A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics 83(1):T39–T48

    Article  Google Scholar 

  40. Wei T, Zhang ZQ (2013) Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng Anal Boundary Elements 37(1):23–31

    MathSciNet  Article  Google Scholar 

  41. Yang F, Fu C-L, Li X-X (2015) The inverse source problem for time-fractional diffusion equation: stability analysis and regularization. Inverse Prob Sci Eng 23(6):969–996

    MathSciNet  Article  Google Scholar 

  42. Zhou L, Selim HM (2003) Application of the fractional advection-dispersion equation in porous media. Soil Sci Soc Am J 67(4):1079–1084

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals via the Project FT151003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Furati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Roberto Garrappa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Furati, K.M., Mustapha, K., Sarumi, I.O. et al. Inverse source in two-parameter anomalous diffusion, numerical algorithms, and simulations over graded time meshes. Comp. Appl. Math. 40, 25 (2021). https://doi.org/10.1007/s40314-020-01399-x

Download citation

Keywords

  • Microwave heating
  • Inverse source problem
  • Anomalous diffusion
  • Volterra integral equation
  • Collocation method
  • Graded mesh error analysis

Mathematics Subject Classification

  • 35R11
  • 35R30