## Abstract

We consider the iterative solution of certain block two-by-two linear systems and introduce a new double-step splitting (NDSS) iteration method. The proposed method is based on the transformed matrix iteration method proposed recently, and obtained by applying two-step and preconditioning techniques for the original linear system. We prove that the NDSS iteration method is convergent under mild conditions. Upper bounds on the spectral radius of the iteration matrix of the NDSS method are presented and the parameters which minimize these bounds are computed. We also consider the inexact NDSS iteration method. The proposed methods are compared theoretically and numerically with some existing ones, which shows the good performance of the NDSS iteration method and its inexact version.

This is a preview of subscription content, log in to check access.

## References

Axelsson O, Kucherov A (2000) Real valued iterative methods for solving complex symmetric linear systems. Numer Linear Algebra Appl 7:197–218

Axelsson O, Salkuyeh DK (2019) A new version of a preconditioning method for certain two-by-two block matrices with square blocks. BIT Numer. Math 2:321–342

Axelsson O, Neytcheva MG, Ahmad B (2014) A comparison of iterative methods to solve complex valued linear algebraic systems. Numer Algorithms 66:811–841

Bai Z-Z (2013) Rotated block triangular preconditioning based on PMHSS. Sci China Math 56:2523–2538

Bai Z-Z, Golub GH (2007) Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J Numer Anal 27:1–23

Bai Z-Z, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24:603–626

Bai Z-Z, Parlett BN, Wang Z-Q (2005) On generalized successive overrelaxation methods for augmented linear systems. Numer Math 102:1–38

Bai Z-Z, Benzi M, Chen F (2010) Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87:93–111

Bai Z-Z, Benzi M, Chen F (2011) On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer Algorithms 56:297–317

Bai Z-Z, Benzi M, Chen F, Wang Z-Q (2013) Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J Numer Anal 33:343–369

Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137

Chen F (2015) On choices of iteration parameter in HSS method. Appl Math Comput 271:832–837

Dehghan M, Dehghani-Madiseh M, Hajarian M (2013) A generalized preconditioned MHSS method for a class of complex symmetric linear systems. Math Model Anal 18:561–576

Edalatpour V, Hezari D, Salkuyeh DK (2015) Accelerated generalized SOR method for a class of complex systems of linear equations. Math Commun 20:37–52

Edalatpour V, Hezari D, Salkuyeh DK (2016) Two efficient inexact algorithms for a class of large sparse complex linear systems. Mediterr J Math 13:2301–2318

Hezari D, Edalatpour V, Salkuyeh DK (2015) Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer Linear Algebra Appl 22:761–776

Hezari D, Salkuyeh DK, Edalatpour V (2016) A new iterative method for solving a class of complex symmetric system of linear equations. Numer Algorithms 73:927–955

Huang Z-G, Wang L-G, Xu Z, Cui J-J (2018) An efficient two-step iterative method for solving a class of complex symmetric linear systems. Comput Math Appl 75:2473–2498

Huang Z-G, Wang L-G, Xu Z, Cui J-J (2019) Preconditioned accelerated generalized successive overrelaxation method for solving complex symmetric linear systems. Comput Math Appl 77:1902–1916

Huang Z-G, Xu Z, Cui J-J (2019) Preconditioned triangular splitting iteration method for a class of complex symmetric linear systems. Calcolo 56:22

Li C-L, Ma C-F (2019) Efficient parameterized rotated shift-splitting preconditioner for a class of complex symmetric linear systems. Numer Algorithms 80:337–354

Li X, Yang A-L, Wu Y-J (2014) Lopsided PMHSS iteration method for a class of complex symmetric linear systems. Numer Algorithms 66:555–568

Li X-A, Zhang W-H, Wu Y-J (2018) On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations. Appl Math Lett 79:131–137

Liang Z-Z, Zhang G-F (2016) On SSOR iteration method for a class of block two-by-two linear systems. Numer Algorithms 71:655–671

Liang Z-Z, Zhang G-F (2019) Robust additive block triangular preconditioners for block two-by-two linear systems. Numer Algorithms 82:503–537

Liu K, Gu G-D (2019) Improved PMHSS iteration methods for complex symmetric linear systems. J Comput Math 37:1–19

Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

Salkuyeh DK (2017) Two-step scale-splitting method for solving complex symmetric system of linear equations. arXiv:1705.02468v2 [math.NA]

Salkuyeh DK, Siahkolaei TS (2018) Two-parameter TSCSP method for solving complex symmetric system of linear equations. Calcolo 55:8

Salkuyeh DK, Hezari D, Edalatpour V (2015) Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int J Comput Math 92:802–815

Siahkolaei TS, Salkuyeh DK (2019) A new double-step method for solving complex Helmholtz equation. Hacet J Math Stat. https://doi.org/10.15672/HJMS.xx

Siahkolaei TS, Salkuyeh DK (2020) On the parameter selection in the transformed matrix iteration method. Numer Algorithms. https://doi.org/10.1007/s11075-020-00884-y

Wang T, Lu L-Z (2016) Alternating-directional PMHSS iteration method for a class of two-by-two block linear systems. Appl Math Lett 58:159–164

Wang T, Zheng Q-Q, Lu L-Z (2017) A new iteration method for a class of complex symmetric linear systems. J Comput Appl Math 325:188–197

Xiao X-Y, Wang X (2018) A new single-step iteration method for solving complex symmetric linear systems. Numer Algorithms 78:643–660

Zhang J-H, Wang Z-W, Zhao J (2018) Preconditioned symmetric block triangular splitting iteration method for a class of complex symmetric linear systems. Appl Math Lett 86:95–102

Zhang J-H, Wang Z-W, Zhao J (2019) Double-step scale splitting real-valued iteration method for a class of complex symmetric linear systems. Appl Math Comput 353:338–346

Zheng Q-Q, Lu L-Z (2017) A shift-splitting preconditioner for a class of block two-by-two linear systems. Appl Math Lett 66:54–60

Zheng Q-Q, Ma C-F (2016) Accelerated PMHSS iteration methods for complex symmetric linear systems. Numer Algorithms 73:501–516

Zheng Z, Huang F-L, Peng Y-C (2017) Double-step scale splitting iteration method for a class of complex symmetric linear systems. Appl Math Lett 73:91–97

## Acknowledgements

I would like to express my sincere thanks to the editor and the anonymous reviewers for their valuable suggestions and constructive comments which greatly improved the presentation of this paper.

## Author information

### Affiliations

### Corresponding author

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China (No. 11901123), the Guangxi Natural Science Foundation (No. 2018JJB110062) and the Xiangsihu Young Scholars Innovative Research Team of Guangxi University for Nationalities (No. 2019RSCXSHQN03).

Communicated by Zhong-Zhi Bai.

## Rights and permissions

## About this article

### Cite this article

Huang, Z. A new double-step splitting iteration method for certain block two-by-two linear systems.
*Comp. Appl. Math.* **39, **193 (2020). https://doi.org/10.1007/s40314-020-01220-9

Received:

Revised:

Accepted:

Published:

### Keywords

- Block two-by-two linear system
- New double-step splitting iteration method
- Two-step technique
- Preconditioning technique
- Convergence properties
- Quasi-optimal parameters
- Inexact implementation

### Mathematics Subject Classification

- 65F10
- 65F50