Skip to main content
Log in

The double-step scale splitting method for solving complex Sylvester matrix equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Double-step scale splitting (DSS) approach is an efficient method for a class of large complex symmetric linear systems. In this work, we will apply DSS approach to specify the approximate solution of complex Sylvester matrix equation. We show that the iterative sequence, without any condition, converges to the unique solution of the Sylvester matrix equation, and also we determine the optimal parameter and the corresponding optimal convergence factor. Finally, a test problem is given to illustrate the efficiency of the new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson BDO, Agathoklis P, Jury EI, Mansour M (1986) Stability and the matrix Lyapunov equation for discrete 2-dimensional systems. IEEE Trans Circ Syst 33:261–267

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z (2011) On Hermitian and skew-Hermitian spliting iteration methods for continuous Sylvester equations. J Comput Math 29:185–198

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Golub GH, Ng MK (2003) On Hermitian and skew-Hermitian spliting iteration methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24:603–626

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Guo X-X, Xu S-F (2006) Alternately linearized implicit iteration methods for the minimal nonnegative solutions of nonsymmetric algebraic Riccati equations. Numer Linear Algebra Appl 13:655–674

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Golub GH, Ng MK (2008) On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl 428:413–440

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Benzi M, Chen F (2010) Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87:93–111

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Benzi M, Chen F (2011) On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer Algorithms 56:297–317

    MathSciNet  MATH  Google Scholar 

  • Bartels RH, Stewart GW (1972) Solution of the matrix equation \( AX+XB=C \): algorithm 432. Commun ACM 15:820–826

    MATH  Google Scholar 

  • Benzi M (2009) A Generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J Matrix Anal Appl 31:360–374

    MathSciNet  MATH  Google Scholar 

  • Bini DA, Iannazzo B, Meini B (2011) Numerical solution of algebraic Riccati equations. SIAM, Philadelphia

    MATH  Google Scholar 

  • Calvetti D, Reichel L (1996) Application of ADI iterative methods to the restoration of noisy images. SIAM J Matrix Anal Appl 17:165–186

    MathSciNet  MATH  Google Scholar 

  • Chang XW, Wang JS (1993) The symmetric solution of the matrix equations \(AX + YA = C, AXA^T + BYB^T=C\) and \((A^TXA, B^T XB) = (C, D)\). Linear Algebra Appl 179:171–189

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hajarian M (2009) Efficient iterative method for solving the second-order Sylvester matrix equation \(EVF^2-AVF-CV = BW\). IET Control Theory Appl 3:1401–1408

    MathSciNet  Google Scholar 

  • Dehghan M, Hajarian M (2009) On the reflexive solutions of the matrix equation \(AXB + CYD = E\). Bull Korean Math Soc 46:511–519

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hajarian M (2010) On the reflexive and anti-reflexive solutions of the generalized coupled Sylvester matrix equations. Int J Syst Sci 41:607–625

    MATH  Google Scholar 

  • Dehghan M, Hajarian M (2010) The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl 432:1531–1552

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hajarian M (2010) An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl Math Model 34(3):639–654

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hajarian M (2011) Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations. Appl Math Model 35(7):3285–3300

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hajarian M (2012) Two iterative algorithms for solving coupled matrix equations over reflexive and anti-reflexive matrices. Comput Appl Math 31:353–371

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shirilord A (2019a) A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation. Appl Math Comput 348:632–651

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shirilord A (2019b) Accelerated double-step scale splitting iteration method for solving a class of complex symmetric linear systems. Numer Algorithms. https://doi.org/10.1007/s11075-019-00682-1

  • Dmytryshyn A, Kågström B (2015) Coupled Sylvester-type matrix equations and block diagonalization. SIAM J Matrix Anal Appl 36:580–593

    MathSciNet  MATH  Google Scholar 

  • Dong Y, Gu C (2017) On PMHSS iteration methods for Sylvester equations. J Comput Math 35:600–619

    MathSciNet  MATH  Google Scholar 

  • Evans DJ, Galligani E (1994) A parallel additive preconditioner for conjugate gradient method for \(AX+XB=C\). Parallel Comput 20:1055–1064

    MathSciNet  MATH  Google Scholar 

  • Golub GH, Nash SG, Van Loan CF (1979) A Hessenberg–Schur method for the problem \(AX +XB = C\). IEEE Trans Automat Control 24:909–913

    MathSciNet  MATH  Google Scholar 

  • Hajarian M (2013) Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J Franklin Inst 350:3328–3341

    MathSciNet  MATH  Google Scholar 

  • Hajarian M (2016) Generalized conjugate direction algorithm for solving the general coupled matrix equations over symmetric matrices. Numer Algorithms 73:591–609

    MathSciNet  MATH  Google Scholar 

  • He ZH (2019) The general solution to a system of coupled Sylvester-type quaternion tensor equations involving \(\eta \)-Hermicity. Bull Iranian Math Soc. https://doi.org/10.1007/s41980-019-00205-7

  • He ZH (2017) The general \(\phi \)-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations. Electron J Linear Algebra 32:475–499

    MathSciNet  MATH  Google Scholar 

  • He ZH (2019) A system of coupled quaternion matrix equations with seven unknowns and its applications. Adv Appl Clifford Algebra 29:38

    MathSciNet  MATH  Google Scholar 

  • He ZH, Agudelo OM, Wanga QW, Moor BD (2016) Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices. Linear Algebra Appl 496:549–593

    MathSciNet  MATH  Google Scholar 

  • He ZH, Wang QW, Zhang Y (2018) A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica 87:25–31

    MathSciNet  MATH  Google Scholar 

  • He ZH, Wang QW, Zhang Y (2019) A simultaneous decomposition for seven matrices with applications. J Comput Appl Math 349:93–113

    MathSciNet  MATH  Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ilic MD (1989) New approaches to voltage monitoring and control. IEEE Control Syst Magn 9:5–11

    Google Scholar 

  • Kyrchei I (2018) Cramer’s rules for Sylvester quaternion matrix equation and its special cases. Adv Appl Clifford Algebras 28(90):1–26

    MathSciNet  MATH  Google Scholar 

  • Lancaster P, Rodman L (1995) Algebraic Riccati equations. The Clarendon Press, Oxford

    MATH  Google Scholar 

  • Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, Orlando

    MATH  Google Scholar 

  • Liao AP, Bai ZZ (2002) Least-squares solutions of the matrix equation \(A^TXA=D\) in bisymmetric matrix set. Math Numer Sin 24:9–20

    MathSciNet  Google Scholar 

  • Liao AP, Bai ZZ, Lei Y (2005) Best approximate solution of matrix equation \(AXB+ CYD= E\). SIAM J Matrix Anal Appl 27:675–688

    MathSciNet  MATH  Google Scholar 

  • Niu Q, Wang X, Lu L-Z (2011) A relaxed gradient based algorithm for solving Sylvester equations. Asian J Control 13:461–464

    MathSciNet  MATH  Google Scholar 

  • Obinata G, Anderson BDO (2001) Model reduction for control system design. Springer, Berlin

    MATH  Google Scholar 

  • Petersen IR (1987) Disturbance attenuation and H1-optimization: a design method based on the algebraic Riccati equation. IEEE Trans Automat Control 32:427–429

    MathSciNet  MATH  Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comp 7:856–869

    MathSciNet  MATH  Google Scholar 

  • Smith RA (1968) Matrix equation \(XA+BX=C\). SIAM J Appl Math 16:198–201

    MathSciNet  MATH  Google Scholar 

  • Starke G, Niethammer W (1991) SOR for \( AX-XB = C \). Linear Algebra Appl 15:355–375

    MathSciNet  MATH  Google Scholar 

  • Van der Schaft A (2000) L2-gain and passivity techniques in nonlinear control, 2nd edn. Springer, London

    MATH  Google Scholar 

  • Wang QW (2005) The general solution to a system of real quaternion matrix equations. Comput Math Appl 49:665–675

    MathSciNet  MATH  Google Scholar 

  • Wang QW, Li CK (2009) Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl 430:1626–1640

    MathSciNet  MATH  Google Scholar 

  • Wang X, Li Y, Dai L (2013) On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB= C. Comput Math Appl 65:657–664

    MathSciNet  MATH  Google Scholar 

  • Wang QW, He ZH, Zhang Y (2019) Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 101:207–213

    MathSciNet  MATH  Google Scholar 

  • Xu G-P, Wei M-S, Zheng D-S (1998) On solutions of matrix equation \(AXB+CYD=F\). Linear Algebra Appl 279:93–109

    MathSciNet  MATH  Google Scholar 

  • Zheng Z, Huang F-L, Peng Y-C (2017) Double-step scale splitting iteration method for a class of complex symmetric linear systems. Appl Math Lett 73:91–97

    MathSciNet  MATH  Google Scholar 

  • Zhou D, Chen G, Cai Q (2015) On modified HSS iteration methods for continuous Sylvester equation. Appl Math Comput 263:84–93

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank both anonymous reviewers for careful reading and valuable comments and suggestions which improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Shirilord, A. The double-step scale splitting method for solving complex Sylvester matrix equation. Comp. Appl. Math. 38, 146 (2019). https://doi.org/10.1007/s40314-019-0921-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0921-6

Keywords

Mathematics Subject Classification

Navigation