Skip to main content
Log in

Discovery of new complementarity functions for NCP and SOCCP

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

It is well known that complementarity functions play an important role in dealing with complementarity problems. In this paper, we propose a few new classes of complementarity functions for nonlinear complementarity problems and second-order cone complementarity problems. The constructions of such new complementarity functions are based on discrete generalization which is a novel idea in contrast to the continuous generalization of Fischer–Burmeister function. Surprisingly, these new families of complementarity functions possess continuous differentiability even though they are discrete-oriented extensions. This feature enables that some methods like derivative-free algorithm can be employed directly for solving nonlinear complementarity problems and second-order cone complementarity problems. This is a new discovery to the literature and we believe that such new complementarity functions can also be used in many other contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baggett L (2012) Analysis of Functions of a Single Variable, University of Colorado, http://cnx.org/content/col11249/1.1/. Accessed 10 Sept 2017

  • Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Chang Y-L, Chen J-S, Yang C-Y (2015) Symmetrization of generalized natural residual function for NCP. Oper Res Lett 43:354–358

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Tseng P (2005) An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Mathe Program 104:293–327

    Article  MathSciNet  Google Scholar 

  • Chen J-S (2006) The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem. J Glob Optim 36:565–580

    Article  MathSciNet  Google Scholar 

  • Chen J-S (2006) Two classes of merit functions for the second-order cone complementarity problem. Mathe Methods Oper Res 64:495–519

    Article  MathSciNet  Google Scholar 

  • Chen J-S (2007) On some NCP-functions based on the generalized Fischer-Burmeister function. Asia Pac J Oper Res 24:401–420

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Gao H-T, Pan S (2009) A \(R\)-linearly convergent derivative-free algorithm for the NCPs based on the generalized Fischer-Burmeister merit function. J Comput Appl Math 232:455–471

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Huang Z-H, She C-Y (2011) A new class of penalized NCP-functions and its properties. Comput Optim Appl 50:49–73

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Ko C-H, Pan S-H (2010) A neural network based on generalized Fischer-Burmeister function for nonlinear complementarity problems. Inf Sci 180:697–711

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Pan S-H (2008) A family of NCP-functions and a descent method for the nonlinear complementarity problem. Comput Optim Appl 40:389–404

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Pan S-H (2012) A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac J Optim 8:33–74

    MathSciNet  MATH  Google Scholar 

  • Chen J-S, Chen X, Tseng P (2004) Analysis of nonsmooth vector-valued functions associated with second-order cones. Math Program 101:95–117

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Pan S-H, Lin T-C (2010) A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs. Nonlinear Anal 72:3739–3758

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Pan S-H, Yang C-Y (2010) Numerical comparison of two effective methods for mixed complementarity problems. J Comput Appl Math 234:667–683

    Article  MathSciNet  Google Scholar 

  • Chen J-S, Ko C-H, Wu X-R (2016) What is the generalization of natural residual function for NCP. Pac J Optim 12:19–27

    MathSciNet  MATH  Google Scholar 

  • Cottle RW, Pang J-S, Stone RE (1992) The linear complementarity problem. Academic Press, New York

    MATH  Google Scholar 

  • Dolan ED, Morè JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213

    Article  MathSciNet  Google Scholar 

  • Faraut J, Korányi A (1994) Analysis on symmetric cones. Oxford University Press, Oxford Mathematical Monographs, New York

    MATH  Google Scholar 

  • Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley-Interscience, Chichester

    MATH  Google Scholar 

  • Facchinei F, Pang J-S (2003) Finite-dimensional variational inequalities and complementarity problems. Springer Verlag, New York

    MATH  Google Scholar 

  • Facchinei F, Soares J (1997) A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J Optim 7:225–247

    Article  MathSciNet  Google Scholar 

  • Fischer A (1992) A special Newton-type optimization methods. Optimization 24:269–284

    Article  MathSciNet  Google Scholar 

  • Fischer A (1997) Solution of the monotone complementarity problem with locally Lipschitzian functions. Math Program 76:513–532

    MathSciNet  MATH  Google Scholar 

  • Fukushima M, Luo Z-Q, Tseng P (2002) Tseng smoothing functions for second-order cone complementarity problems. SIAM J Optim 12:436–460

    Article  Google Scholar 

  • Galántai A (2012) Properties and construction of NCP functions. Comput Optim Appl 52:805–824

    Article  MathSciNet  Google Scholar 

  • Geiger C, Kanzow C (1996) On the resolution of monotone complementarity problems. Comput Optim Appl 5:155–173

    Article  MathSciNet  Google Scholar 

  • Hayashi S, Yamashita N, Fukushima M (2005) Robust Nash equilibria and second-order cone complementarity problems. J Nonlinear Convex Anal 6:283–296

    MathSciNet  MATH  Google Scholar 

  • Harker PT, Pang J-S (1990) Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications. Math Program 48:161–220

    Article  MathSciNet  Google Scholar 

  • Hu S-L, Huang Z-H, Chen J-S (2009) Properties of a family of generalized NCP-functions and a derevative free algotithm for complementarity problems. J Comput Appl Math 230:69–82

    Article  MathSciNet  Google Scholar 

  • Jiang H (1996) Unconstrained minimization approaches to nonlinear complementarity problems. J Glob Optim 9:169–181

    Article  MathSciNet  Google Scholar 

  • Kanzow C (1996) Nonlinear complementarity as unconstrained optimization. J Optim Theory Appl 88:139–155

    Article  MathSciNet  Google Scholar 

  • Kanzow C, Kleinmichel H (1995) A class of Netwton-type methods for equality and ineqality constrained optimization. Optim Methods Softw 5:173–198

    Article  Google Scholar 

  • Koshy T (2007) Elementary number theory with applications, 2nd edn. Academic Press, Cambridge, London

    MATH  Google Scholar 

  • Kanno Y, Martins AC, da Costa A pinto (2006) Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int J Numer Methods Eng 65:62–83

    Article  MathSciNet  Google Scholar 

  • Mangasarian OL (1976) Equivalence of the complementarity problem to a system of nonlinear equations. SIAM J Appl Math 31:89–92

    Article  MathSciNet  Google Scholar 

  • Pan S-H, Chen J-S (2010) A linearly convergent derivative-free descent method for the second-order cone complementarity problem. Optimization 59:1173–1197

    Article  MathSciNet  Google Scholar 

  • Pan S-H, Kum S, Lim Y, Chen J-S (2014) On the generalized Fischer-Burmeister merit function for the second-order cone complementarity problem. Math Comput 83:1143–1171

    Article  MathSciNet  Google Scholar 

  • Pang J-S (1990) Newton’s method for \(B\)-differentiable equations. Math Oper Res 15:311–341

    Article  MathSciNet  Google Scholar 

  • Pang J-S, Chan D (1982) Iterative methods for variational and complemantarity problems. Math Program 27:284–313

    Article  Google Scholar 

  • Sun D, Qi L (1999) On NCP-functions. Comput Optim Appl 13:201–220

    Article  MathSciNet  Google Scholar 

  • Tsai H-Y, Chen J-S (2014) Geometric views of the generalized Fischer-Burmeister function and its induced merit function. Appl Math Comput 237:31–59

    MathSciNet  MATH  Google Scholar 

  • Yamashita N, Fukushima M (1995) On stationary points of the implict Lagrangian for nonlinear complementarity problems. J Optim Theory Appl 84:653–663

    Article  MathSciNet  Google Scholar 

  • Yamashita N, Fukushima M (1997) Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems. Math Program 76:469–491

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

Communicated by Jinyun Yuan.

Peng-Fei Ma This research was supported by a grant from the National Natural Science Foundation of China(No.11626212).

Jein-Shan Chen The author’s work is supported by Ministry of Science and Technology, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, PF., Chen, JS., Huang, CH. et al. Discovery of new complementarity functions for NCP and SOCCP. Comp. Appl. Math. 37, 5727–5749 (2018). https://doi.org/10.1007/s40314-018-0660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0660-0

Keywords

Mathematics Subject Classification

Navigation