Advertisement

A globally convergent variant of mid-point method for finding the matrix sign

Article
  • 1 Downloads

Abstract

In this research, an efficient variant of mid-point iterative method is given for computing the sign of a square complex matrix having no pure imaginary eigenvalues. It is proven that the method is new and has global convergence with high order of convergence seven. To justify the effectiveness of the new scheme, several comparisons for matrices of different sizes are worked out to show that the new method is efficient.

Keywords

Matrix sign Mid-point method Global convergence Iterative methods High order 

Mathematics Subject Classification

65F60 

References

  1. Babajee DKR (2012) Several improvements of the 2-point third order midpoint iterative method using weight functions. Appl Math Comput 218:7958–7966MathSciNetMATHGoogle Scholar
  2. Bai Z, Demmel J (1998) Using the matrix sign function to compute invariant subspaces. SIAM J Matrix Anal Appl 19:205–225MathSciNetCrossRefMATHGoogle Scholar
  3. Barrachina S, Benner P, Quintana-Ortí ES (2007) Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function. Numer Algor 46:351–368MathSciNetCrossRefMATHGoogle Scholar
  4. Benner P, Quintana-Ortí ES (1999) Solving stable generalized Lyapunov equations with the matrix sign function. Numer Algor 20:75–100MathSciNetCrossRefMATHGoogle Scholar
  5. Bini DA, Higham NJ, Meini B (2005) Algorithms for the matrix \(p\)th root. Numer Algor 39:349–378CrossRefMATHGoogle Scholar
  6. Byers R, He C, Mehrmann V (1997) The matrix sign function method and the computation of invariant subspaces. SIAM J Matrix Anal Appl 18:615–632MathSciNetCrossRefMATHGoogle Scholar
  7. Ghorbanzadeh M, Mahdiani K, Soleymani F, Lotfi T (2016) A class of Kung-Traub-type iterative algorithms for matrix inversion. Int J Appl Comput Math 2:641–648MathSciNetCrossRefGoogle Scholar
  8. Gomilko O, Greco F, Ziȩtak K (2012) A Padé family of iterations for the matrix sign function and related problems. Numer Lin Alg Appl 19:585–605CrossRefMATHGoogle Scholar
  9. Hardin J, Garcia SR, Golan D (2013) A method for generating realistic correlation matrices. Ann Appl Stat 7:1733–1762MathSciNetCrossRefMATHGoogle Scholar
  10. Higham NJ (2008) Functions of matrices: theory and computation. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATHGoogle Scholar
  11. Howland JL (1983) The sign matrix and the separation of matrix eigenvalues. Linear Algebra Appl 49:221–232MathSciNetCrossRefMATHGoogle Scholar
  12. Iannazzo B (2007) Numerical solution of certain nonlinear matrix equations, Ph.D. thesis, Dipartimento di Matematica, Università di PisaGoogle Scholar
  13. Kenney CS, Laub AJ (1991) Rational iterative methods for the matrix sign function. SIAM J Matrix Anal Appl 12:273–291MathSciNetCrossRefMATHGoogle Scholar
  14. Kenney CS, Laub AJ (1992) On scaling Newton’s method for polar decomposition and the matrix sign function. SIAM J Matrix Anal Appl 13:688–706MathSciNetCrossRefMATHGoogle Scholar
  15. Kenney CS, Laub AJ (1995) The matrix sign function. IEEE Trans Automat Control 40:1330–1348MathSciNetCrossRefMATHGoogle Scholar
  16. Laszkiewicz B, Ziȩtak K (2008) Algorithms for the matrix sector function. Elect Tran Numer Anal 31:358–383MathSciNetMATHGoogle Scholar
  17. Leyva-Ramos J (2013) A note on mode decoupling of linear time-invariant systems using the generalized sign matrix. Appl Math Comput 219:10817–10821MathSciNetMATHGoogle Scholar
  18. Roberts JD (1980) Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int J Control 32:677–687MathSciNetCrossRefMATHGoogle Scholar
  19. Soheili AR, Toutounian F, Soleymani F (2015) A fast convergent numerical method for matrix sign function with application in SDEs. J Comput Appl Math 282:167–178MathSciNetCrossRefMATHGoogle Scholar
  20. Soleymani F, Karimi Vanani S, Afghani A (2011) A general three-step class of optimal iterations for nonlinear equations. Math Prob Eng 2011:10 (Article ID 469512) MathSciNetCrossRefMATHGoogle Scholar
  21. Soleymani F, Stanimirović PS, Shateyi S, Haghani FK (2014) Approximating the matrix sign function using a novel iterative method. Abst Appl Anal 2014:9 (Article ID 105301) MathSciNetGoogle Scholar
  22. Soleymani F, Tohidi E, Shateyi S, Haghani FK (2014) Some matrix iterations for computing matrix sign function. J Appl Math 2014:9 (Article ID 425654) MathSciNetGoogle Scholar
  23. Soleymani F, Sharifi M, Shateyi S, Khaksar F (2014) Haghani, an algorithm for computing geometric mean of two hermitian positive definite matrices via matrix sign. Abs Appl Anal 2014:1–6Google Scholar
  24. Soleymani F (2015) An efficient and stable Newton-type iterative method for computing generalized inverse \(A_{T, S}^{(2)}\). Numer Algor 69:569–578CrossRefMATHGoogle Scholar
  25. Wagon S (2010) Math Action, 3rd edn. Springer, New YorkCrossRefMATHGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Hamedan BranchIslamic Azad UniversityHamedanIran

Personalised recommendations