Advertisement

Computational and Applied Mathematics

, Volume 37, Issue 4, pp 5424–5455 | Cite as

Numerical analysis of a thermal contact problem with adhesion

  • Oanh Chau
Article
  • 35 Downloads

Abstract

In this paper, we study a class of dynamic thermal problems involving a frictional normal compliance adhesive contact model and a non-clamped condition for visco-elastic materials. The variational formulation of the problem leads to a general system defined by a second-order quasi-variational evolution inequality on the displacement field coupled with the two first-order evolution equations describing the evolution of the temperature and adhesion. We establish an existence and uniqueness result of the solution on displacement, temperature and adhesion. Then we provide a fully discrete numerical scheme of approximation and derive an error estimate. Finally, various numerical computations are included.

Keywords

Time-dependent long memory thermoviscoelasticity Adhesion Non-clamped condition Dynamic process Numerical analysis Numerical computations 

Mathematics Subject Classification

74M15 74M10 74F05 74S05 74S20 

References

  1. Chau O, Fernández JR, Han W, Sofonea M (2003) Variational and numerical analysis of a dynamic frictionless contact problem with adhesion. J Comput Appl Math 156:127–157MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chau O (2000) Analyse variationnelle et numérique de quelques problèmes aux limites en mécanique du contact, PHD, Perpignan FranceGoogle Scholar
  3. Ciarlet PG (1978) The finite element method for elliptic problems, Vol 4, 1st edn. North-HollandGoogle Scholar
  4. Denkowski Z, Migorski S (2005) A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. Nonlinear Anal Theory Methods Appl 60:1415–1441MathSciNetCrossRefzbMATHGoogle Scholar
  5. Duvaut G, Lions JL (1972) Les Inéquations en Mécanique et en Physique. Dunod, PariszbMATHGoogle Scholar
  6. Frémond M (1987) Adhérence des solides. Journal de Mécanique Théorique et Appliquée 6:383–407MathSciNetzbMATHGoogle Scholar
  7. Goeleven D, Motreanu D, Dumont Y, Rochdi M (2003) Variational and hemivariational inequalities, theory, methods and applications, volume I: unilateral analysis and unilateral mechanics. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar
  8. Han W, Sofonea M (2002) Quasistatic contact problems in viscoelasticity and viscoplasticity. Studies in advanced mathematics, vol 30. American Mathematical Society, International Press, Providence, SomervilleGoogle Scholar
  9. Kikuchi N, Oden JT (1988) Contact problems in elasticity. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  10. Migorski S (2006) Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems. Comput Math Appl 52(5):677–698MathSciNetCrossRefzbMATHGoogle Scholar
  11. Migorski S, Ochal A, Sofonea M (2013) Nonlinear inclusions and hemivariational in-equalities. Models and analysis of contact problems, advances in mechanics and mathematics. Springer, New YorkzbMATHGoogle Scholar
  12. Migorski S, Szafraniec P (2014) A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermoviscoelasticity. Nonlinear Anal Real World Appl 15:158–171MathSciNetCrossRefzbMATHGoogle Scholar
  13. Nečas J, Hlaváček I (1981) Mathematical theory of elastic and elastoplastic bodies: an introduction. Elsevier, AmsterdamzbMATHGoogle Scholar
  14. Panagiotopoulos PD (1985) Inequality problems in mechanics and applications. Birkhäuser, BaselCrossRefzbMATHGoogle Scholar
  15. Panagiotopoulos PD (1993) Hemivariational inequalities, applications in mechanics and engineering. Springer, BerlinCrossRefzbMATHGoogle Scholar
  16. Szafraniec P (2016) Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity. Math Mech Solids 21:525–538MathSciNetCrossRefzbMATHGoogle Scholar
  17. Suquet P (1982) Plasticité et homogénéisation: Thèse de Doctorat d’État, vol 6. Université Pierre et Marie Curie, ParisGoogle Scholar
  18. Zeidler E (1997) Nonlinear functional analysis and its applications, II/A, linear monotone operators. Springer, BerlinGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Authors and Affiliations

  1. 1.University of La RéunionSaint-Denis Messag Cedex 9France

Personalised recommendations