Extended Newton-type method for nonlinear functions with values in a cone

Article
  • 73 Downloads

Abstract

In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341–347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295–313, 1986; Numer Math 51(5):545–557, 1987) and Robinson (Numer Math 19:341–347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.

Keywords

Newton-like method Inclusion problem Banach space Convex process 

Mathematics Subject Classification

Primary 65K05 65K15 49M15 49M37 

Notes

Acknowledgements

The authors would like to thank the two anonymous referees for their constructive comments which have helped to substantially improve the presentation of the paper.

References

  1. Adly S, Van Ngai H, Nguyen VV (2016) Newton’s method for solving generalized equations: Kantorovich’s and Smale’s approaches. J Math Anal Appl 439(1):396–418MathSciNetCrossRefMATHGoogle Scholar
  2. Andrew AL (1976) Error bounds for the modified Newton’s method. Bull Austr Math Soc 14(3):427–433MathSciNetCrossRefMATHGoogle Scholar
  3. Argyros IK (2008) Convergence and applications of Newton-type iterations. Springer, New YorkMATHGoogle Scholar
  4. Argyros IK, Hilout S (2010) Inexact Newton-type methods. J Complex 26(6):577–590MathSciNetCrossRefMATHGoogle Scholar
  5. Blum L, Cucker F, Shub M, Smale S (1998) Complexity and real computation. Springer, New York (With a foreword by Richard M. Karp)Google Scholar
  6. Bonnans JF (1994) Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl Math Optim 29(2):161–186MathSciNetCrossRefMATHGoogle Scholar
  7. Chen X, Nashed Z, Qi L (1997) Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM J Optim 7(2):445–462MathSciNetCrossRefMATHGoogle Scholar
  8. Cibulka R, Dontchev A, Geoffroy MH (2015) Inexact newton methods and Dennis–Moré theorems for nonsmooth generalized equations. SIAM J Control Optim 53(2):1003–1019MathSciNetCrossRefMATHGoogle Scholar
  9. Cibulka R, Dontchev A, Preininger J, Roubal T, Veliov V (2015) Kantorovich-type theorems for generalized equations. Res Rep 2015–16:1–26Google Scholar
  10. Daniel JW (1973) Newton’s method for nonlinear inequalities. Numer Math 21:381–387MathSciNetCrossRefMATHGoogle Scholar
  11. Dennis JE Jr, (1970) On the convergence of Newton-like methods. In: Numerical methods for nonlinear algebraic equations (Proc. Conf., Univ. Essex, Colchester, 1969). Gordon and Breach, London, pp 163–181Google Scholar
  12. Dontchev AL (1996) Local analysis of a Newton-type method based on partial linearization. In: The mathematics of numerical analysis (Park City, UT, 1995), vol 32 of Lectures in Appl. Math.. American Mathematical Society, Providence, RI, pp 295–306Google Scholar
  13. Dontchev A L, Rockafellar RT (2009) Implicit functions and solution mappings. Springer Monographs in Mathematics. A view from variational analysis. Springer, DordrechtGoogle Scholar
  14. Ferreira OP, Silva GN (2018) Inexact Newton’s method for nonlinear functions with values in a cone. Appl Anal.  https://doi.org/10.1080/00036811.2018.1430779
  15. Ferreira O (2015) A robust semi-local convergence analysis of Newtons method for cone inclusion problems in Banach spaces under affine invariant majorant condition. J Comput Appl Math 279:318–335MathSciNetCrossRefMATHGoogle Scholar
  16. Ferreira OP, Svaiter BF (2009) Kantorovich’s majorants principle for Newton’s method. Comput Optim Appl 42(2):213–229MathSciNetCrossRefMATHGoogle Scholar
  17. Ferreira OP, Gonçalves MLN, Oliveira PR (2013) Convergence of the Gauss–Newton method for convex composite optimization under a majorant condition. SIAM J Optim 23(3):1757–1783MathSciNetCrossRefMATHGoogle Scholar
  18. Gutierrez JM, Hernández MA (2000) Newton’s method under weak Kantorovich conditions. IMA J Numer Anal 20(4):521–532MathSciNetCrossRefMATHGoogle Scholar
  19. He Y, Sun J (2005) Error bounds for degenerate cone inclusion problems. Math Oper Res 30(3):701–717MathSciNetCrossRefMATHGoogle Scholar
  20. Josephy NH (1979) Quasi-Newton methods for generalized equations. Technical report, DTIC DocumentGoogle Scholar
  21. Josephy N (1979) Newton’s method for generalized equations and the PIES energy model. University of Wisconsin–Madison, MadisonGoogle Scholar
  22. Kantorovič LV (1948) On Newton’s method for functional equations. Doklady Akad Nauk SSSR (NS) 59:1237–1240MathSciNetGoogle Scholar
  23. Kantorovich LV, Akilov GP (1964) Functional analysis in normed spaces. The Macmillan Co., New YorkMATHGoogle Scholar
  24. Khan AA, Sama M (2013) A new conical regularization for some optimization and optimal control problems convergence analysis and finite element discretization. Numer Funct Anal Optim 24(8): 861–895Google Scholar
  25. Li C, Ng KF (2012) Convergence analysis of the Gauss–Newton method for convex inclusion and convex-composite optimization problems. J Math Anal Appl 389(1):469–485MathSciNetCrossRefMATHGoogle Scholar
  26. Li Z, Wang ZQ, Zhou J (2017) A new augmented singular transform and its partial newton-correction method for finding more solutions. J Sci Comput 71(2):634–659MathSciNetCrossRefMATHGoogle Scholar
  27. Miel GJ (1979) Unified error analysis for Newton-type methods. Numer Math 33(4):391–396MathSciNetCrossRefMATHGoogle Scholar
  28. Miel GJ (1980) Majorizing sequences and error bounds for iterative methods. Math Comput 34(149):185–202MathSciNetCrossRefMATHGoogle Scholar
  29. Nashed MZ, Chen X (1993) Convergence of Newton-like methods for singular operator equations using outer inverses. Numer Math 66(1):235–257MathSciNetCrossRefMATHGoogle Scholar
  30. Ortega JM, Rhienboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New YorkGoogle Scholar
  31. Pietrus A, Jean-Alexis C (2013) Newton-secant method for functions with values in a cone. Serdica Math J 39(3–4):271–286MathSciNetMATHGoogle Scholar
  32. Polyak BT (2007) Newton’s method and its use in optimization. Eur J Oper Res 181(3):1086–1096MathSciNetCrossRefMATHGoogle Scholar
  33. Pšeničnyĭ BN (1970) A Newton method for the solution of systems of equalities and inequalities. Mat Zametki 8:635–640MathSciNetGoogle Scholar
  34. Rheinboldt WC (1968) A unified convergence theory for a class of iterative processes. SIAM J Numer Anal 5:42–63MathSciNetCrossRefMATHGoogle Scholar
  35. Robinson SM (1972) Extension of Newton’s method to nonlinear functions with values in a cone. Numer Math 19:341–347MathSciNetCrossRefMATHGoogle Scholar
  36. Robinson SM (1972) Normed convex processes. Trans Am Math Soc 174:127–140MathSciNetCrossRefMATHGoogle Scholar
  37. Rockafellar RT (1967) Monotone processes of convex and concave type. Memoirs of the American Mathematical Society, no 77. American Mathematical Society, Providence, RIGoogle Scholar
  38. Rockafellar RT (1970) Convex analysis. Princeton Mathematical Series, no 28. Princeton University Press, Princeton, NJGoogle Scholar
  39. Silva GN (2016) Kantorovich’s theorem on Newton’s method for solving generalized equations under the majorant condition. Appl Math Comput 286:178–188MathSciNetGoogle Scholar
  40. Wang JH, Huang S, Li C (2009) Extended Newton’s method for mappings on Riemannian manifolds with values in a cone. Taiwan J Math 13(2B):633–656MathSciNetCrossRefMATHGoogle Scholar
  41. Yamamoto T (1986) Error bounds for Newton-like methods under Kantorovich type assumptions. Jpn J Appl Math 3(2):295–313MathSciNetCrossRefMATHGoogle Scholar
  42. Yamamoto T (1987) A convergence theorem for Newton-like methods in Banach spaces. Numer Math 51(5):545–557MathSciNetCrossRefMATHGoogle Scholar
  43. Zhang Y, Wang J, Guu SM (2015) Convergence criteria of the generalized Newton method and uniqueness of solution for generalized equations. J Nonlinear Convex Anal 16(7):1485–1499MathSciNetMATHGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Authors and Affiliations

  1. 1.Centro das Ciências Exatas e das TecnologiasUniversidade Federal do Oeste da BahiaBarreirasBrazil
  2. 2.Departamento de Matemática, ParnaíbaUniversidade Federal do PiauíParnaíbaBrazil

Personalised recommendations