Skip to main content
Log in

PCG method with Strang’s circulant preconditioner for Hermitian positive definite linear system in Riesz space fractional advection–dispersion equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, preconditioned conjugate gradient (PCG) method with Strang’s circulant preconditioner is investigated to solve the Hermitian positive definite linear systems, which is result from the Crank–Nicolson (C-N) finite difference scheme with the weighted and shifted Grünwald difference (WSGD) operators to discretize the Riesz space fractional advection–dispersion equation (RSFADE). We show that the spectrum of the preconditioned matrix is clustered around 1, and the singular values of the preconditioned matrix are uniformly bounded away from zero under a certain condition, respectively; hence the PCG method, when applied to solving the preconditioned system, converges superlinearly. Moreover, the complexity in each iteration of the PCG method is \(O(N\log N)\) via using the fast Fourier transforms, where N is the matrix size. Numerical experiments are included to demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai J, Feng X (2007) Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Proc 16:2492–2502

    Article  MathSciNet  Google Scholar 

  • Benson D, Wheatcraft SW, Meerschaert MM (2000a) Application of a fractional advection–dispersion equation. Water Resour Res 36:1403–1413

    Article  Google Scholar 

  • Benson D, Wheatcraft SW, Meerschaert MM (2000b) The fractional-order governing equation of Lévy motion. Water Resour. Res 36:1413–1423

    Article  Google Scholar 

  • Carella AR, Dorao CA (2013) Least-squares spectral method for the solution of a fractional advection–dispersion equation. J Comput Phys 232:33–45

    Article  MathSciNet  Google Scholar 

  • Carreras BA, Lynch VE, Zaslavsky GM (2001) Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys Plasma 8:5096–5103

    Article  Google Scholar 

  • Çelik C, Duman M (2012) Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J Comput Phys 231:1743–1750

    Article  MathSciNet  MATH  Google Scholar 

  • Chan R, Jin XQ (2007) An introduction to iterative Toeplitz solvers. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Chan R, Ng MK (1996) Conjugate gradient methods for Toeplitz systems. SIAM Rev 38:427–482

    Article  MathSciNet  MATH  Google Scholar 

  • Chan R, Strang G (1989) Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J Sci Stat Comput 10:104–119

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Holm S (2004) Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency. J Acoust Soc Am 115(4):1424–1430

    Article  Google Scholar 

  • Chen W, Pang GF (2016) A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J Comput Phys 309(15):350–367

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Hu S, Cai W (2016) A causal fractional derivative model for acoustic wave propagation in lossy media. Arch Appl Mech 86(3):529–539

    Article  Google Scholar 

  • Chen W, Fang J, Pang GF, Holm S (2017) Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation. J Acoust Soc Am 141(1):244–253

    Article  Google Scholar 

  • Chou LK, Lei SL (2016) Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy. Comput Math Appl 73(3):385–403

    Article  MathSciNet  MATH  Google Scholar 

  • Ding HF, Li CP (2016) High-order algorithms for Riesz derivative and their applications (III). Fract Calc Appl Anal 19:19–55

    Article  MathSciNet  MATH  Google Scholar 

  • Ding HF, Li CP, Chen YQ (2014) High-order algorithms for Riesz derivative and their applications (I). Abstr Appl Anal 17. https://doi.org/10.1155/2014/653797

  • Ding HF, Li CP, Chen YQ (2015) High-order algorithms for Riesz derivative and their applications (II). J Comput Phys 293:218–237

    Article  MathSciNet  MATH  Google Scholar 

  • Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection–dispersion equation. Numer Methods Partial Differ Equ 22:558–576

    Article  MathSciNet  MATH  Google Scholar 

  • Feng LB, Zhuang PH, Liu FW, Turner I, Li J (2016) High-order numerical methods for the Riesz space fractional advection–dispersion equations. Comput Math Appl. https://doi.org/10.1016/j.camwa.2016.01.015

  • Golbabai A, Sayevand K (2011) Analytical modelling of fractional advection–dispersion equation defined in a bounded space domain. Math Comput Model 53:1708–1718

    Article  MathSciNet  MATH  Google Scholar 

  • Hejazi H, Moroney T, Liu FW (2014) Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J Comput Appl Math 255:684–697

    Article  MathSciNet  MATH  Google Scholar 

  • Horn RA, Johnson CR (1991) Topic in matrix analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huang FH, Liu FW (2005) The fundamental solution of the space-time fractional advection–dispersion equation. J Appl Math Comput 18(1–2):339–350

    Article  MathSciNet  MATH  Google Scholar 

  • Jin XQ, Lin FR, Zhao Z (2015) Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun Comput Phys 18(2):469–488

    Article  MathSciNet  MATH  Google Scholar 

  • Lei SL, Sun HW (2013) A circulant preconditioner for fractional diffusion equations. J Comput Phys 242:715–725

    Article  MathSciNet  MATH  Google Scholar 

  • Lei SL, Chen X, Zhang XH (2016) Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J Appl Math 6(2):109–130

    Article  MathSciNet  MATH  Google Scholar 

  • Lin FR, Yang SW, Jin XQ (2014) Preconditioned iterative methods for fractional diffusion equation. J Comput Phys 256:109–117

    Article  MathSciNet  MATH  Google Scholar 

  • Liu FW, Anh V, Turner I, Zhuang PH (2003) Time fractional advection–dispersion equation. J Appl Math Comput 13(1–2):233–246

    Article  MathSciNet  MATH  Google Scholar 

  • Liu FW, Zhuang PH, Anh V, Turner I, Burra K (2007a) Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation. Appl Math Comput 191:12–20

    MathSciNet  MATH  Google Scholar 

  • Liu QX, Liu FW, Turner I, Anh V (2007b) Approximation of the Levy–Feller advection–dispersion process by random walk and finite difference method. J Comput Phys 222(1):57–70

    Article  MathSciNet  MATH  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House Publishers, New York

    Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection–dispersion flow equations. J Comput Appl Math 172:65–77

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56:80–90

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  • Pan JY, Ke RH, Ng MK, Sun HW (2014) Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J Sci Comput 36:A2698–A2719

    Article  MathSciNet  MATH  Google Scholar 

  • Pang HK, Sun HW (2012) Multigrid method for fractional diffusion equations. J Comput Phys 231:693–703

    Article  MathSciNet  MATH  Google Scholar 

  • Pang HK, Sun HW (2016) Fast numerical contour integral method for fractional diffusion equations. J Sci Comput 66:41–66

    Article  MathSciNet  MATH  Google Scholar 

  • Qu W, Lei SL, Vong SW (2014) Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int J Comput Math 91:2232–2242

    Article  MathSciNet  MATH  Google Scholar 

  • Raberto M, Scalas E, Mainardi F (2002) Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314:749–755

    Article  MATH  Google Scholar 

  • Ran YH, Wang JG (2016) On ADI-like iteration method for fractional diffusion equations. Linear Algebra Appl 493:544–555

    Article  MathSciNet  MATH  Google Scholar 

  • Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos 7:753–764

    Article  MathSciNet  MATH  Google Scholar 

  • Shen SJ, Liu FW, Anh V, Turner I (2008) The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J Appl Math 73(6):850–872

    Article  MathSciNet  MATH  Google Scholar 

  • Shen SJ, Liu FW, Anh V (2011) Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection–diffusion equation. Numer Algorithms 56:383–403

    Article  MathSciNet  MATH  Google Scholar 

  • Shlesinger MF, West BJ, Klafter J (1987) Lévy dynamics of enhanced diffusion: application to turbulence. Phys Rev Lett 58:1100–1103

    Article  MathSciNet  Google Scholar 

  • Sousa E (2009) Finite difference approximates for a fractional advection diffusion problem. J Comput Phys 228:4038–4054

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa E, Li C (2015) A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. Appl Numer Math 90:22–37

    Article  MathSciNet  MATH  Google Scholar 

  • Tian WY, Zhou H, Deng WH (2015) A class of second order difference approximation for solving space fractional diffusion equations. Math Comput 84:1703–1727

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Du N (2013) A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J Comput Phys 253:50–63

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Du N (2014) Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J Comput Phys 258:305–318

    Article  MathSciNet  MATH  Google Scholar 

  • Wang KQ, Wang H (2011) A fast characteristic finite difference method for fractional advection–diffusion equations. Adv Water Resour 34:810–816

    Article  Google Scholar 

  • Wang WF, Chen X, Ding D, Lei SL (2015a) Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int J Comput Math 92(12):2596–2614

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XB, Liu FW, Chen XJ (2015b) Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv Math Phys. 14. https://doi.org/10.1155/2015/590435

  • Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371:461–580

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Sun HW, Pang HK (2015) Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J Comput Phys 299:130–143

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to convey their thanks to the anonymous referees and the associate editor for their very helpful comments and suggestions, which greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qu.

Additional information

Communicated by José Tenreiro Machado.

Wei Qu is supported by the National Natural Science Foundation of China (Grant No. 11601340). Yong Liang is supported by the National Natural Science Foundation of China (Grant No. 61661166011), and Macau Science and Technology Development Fund (FDCT) 003/2016/AFJ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, W., Shen, HW. & Liang, Y. PCG method with Strang’s circulant preconditioner for Hermitian positive definite linear system in Riesz space fractional advection–dispersion equations. Comp. Appl. Math. 37, 4554–4569 (2018). https://doi.org/10.1007/s40314-018-0586-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0586-6

Keywords

Mathematics Subject Classification

Navigation