Skip to main content
Log in

Kalman filter for attitude determination of a CubeSat using low-cost sensors

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Nanosatellites have become a common choice for certain space missions, principally in universities, due to their low production and launching costs and reduced developing time. However, they present some technological challenges. In a CubeSat, total mass and available electric power are very restricted. Therefore, subsystem components and payload must be designed to have the smallest size, mass, and power consumption possible for the mission. Regarding to Attitude Determination and Control System, one of restrictions in developing CubeSats is the need to use small and low-cost sensors which fulfill satellite building restrictions. Thus, commercial-off-the-shelf components are a common choice in CubeSat development, but these parts normally present high noise levels. Therefore, a multiplicative Kalman filter for attitude determination algorithm based on quaternions is proposed. Data are simulated using typical values for low-cost sensors, namely, 3-axes magnetometer, 3-axes gyroscope, and a sun sensor. Results are compared to the extended Kalman filter proposed for AAUSAT-3 satellite and to the QUEST method, showing a better precision and low execution time compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bouwmeester J, Guo J (2010) Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronautica 67(7–8):854–862

    Article  Google Scholar 

  • Carrara V, Kuga HK, Bringhenti PM, de Carvalho MJM (2014) Attitude determination, control and operating modes for CONASAT Cubesats. In: Proceedings of 24 International Symposium on Space Flight Dynamics (ISSFD 2014), Laurel, Maryland, USA

  • Crassidis J, Junkins J (2012) Optimal estimation of dynamic systems. CRC, Boca Raton

    MATH  Google Scholar 

  • Duarte RO, Martins-Filho LS, Kuga HK (2009) Performance comparison of attitude determination algorithms developed to run in a microprocessor environment. In: International Congress of Mechanical Engineering, 20th, Proceedings of COBEM 2009, ABCM, Gramado, RS, Brazil

  • Duarte RO, Torres FE, Gomes FH, Martins-Filho LS, Kuga HK (2011) An attitude determination system implementation to low orbit small satellite with fault tolerant techniques. In: Proceedings of the 8th IAA Symposium on Small Satellites for Earth Observation, IAA, Berlin, pp 453–459

  • Flenniken IV WS (2005) Modeling inertial measurement units and analyzing the effect of their errors in navigation applications. Master’s thesis, Auburn University

  • Garcia RV, Kuga HK, Zanardi MC (2012) Unscented Kalman filter applied to the spacecraft attitude estimation with Euler angles. Math Probl Eng 2012:1–12. doi:10.1155/2012/985429

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia RV, Kuga HK, Zanardi MC (2016a) Unscented Kalman filter for determination of spacecraft attitude using different attitude parameterizations and real data. J Aerosp Technol Manag 8(1):82–90. doi:10.5028/jatm.v8i1.509

    Article  Google Scholar 

  • Garcia RV, Matos NFO, Kuga HK, Zanardi MC (2016b) Unscented Kalman filter for spacecraft attitude estimation using modified Rodrigues parameters and real data. Comput Appl Math 3:835–846

    Article  MathSciNet  Google Scholar 

  • Gravdahl JT (2004) Magnetic attitude control for satellites. In: Proceedings of the 8th IEEE Conference on Decision and Control, IEEE, pp 261–266. doi:10.1109/CDC.2004.1428640

  • Jensen KF, Vinther K (2010) Attitude determination and control system for AAUSAT3. Master’s thesis, Aalborg University, Aalborg

  • Lefferts EJ, Markley FL, Shuster MD (1982) Kalman filtering for spacecraft attitude estimation. J Guid Control Dyn 5(5):417–429

    Article  Google Scholar 

  • Ovchinnikov MY, Penkov VI, Malphrus B, Brown K, Roldugin DS (2014) Active magnetic attitude control algorithms for a CubeSat for astrophysics research. Keldysh Institute Preprints 47. http://keldysh.ru/papers/2014/prep2014_47_eng.pdf. Accessed 9 Mar 2017

  • Reda I, Andreas A (2008) Solar position algorithm for solar radiation applications. Tech. rep., National Renewable Energy Laboratory, NREL/TP-560-34302

  • Selva D, Krejci D (2012) A survey and assessment of the capabilities of CubeSats for Earth observation. Acta Astronautica 74:50–68

    Article  Google Scholar 

  • Shuster MD, Oh SD (1981) Three-axis attitude determination from vector observations. J Guid Control 4(1):70–77

    Article  Google Scholar 

  • Swartwout M (2013) The long-threatened flood of university-class spacecraft (and CubeSats) has come: Analyzing the numbers. In: Proceedings of the AIAA/USU Small Satellite Conference, AAIA, Utah State University, Logan, UT, Standards and Education, SSC13-IX-01

  • The CubeSat Program (2015) CubeSat design specification rev. 13. http://www.cubesat.org/s/cds_rev13_final2.pdf. Accessed 22 Feb 2017

  • Thébault E et al (2015) International geomagnetic reference field: the 12th generation. Earth Planets Sp. doi:10.1186/s40623-015-0228-9

    Article  Google Scholar 

  • Theil S, Appel P, Schleicher A (2003) Low cost, good accuracy – attitude determination using magnetometer and simple sun sensor. In: Proceedings of the AIAA/USU Small Satellite Conference, AAIA, Logan, UT, SSC03-XI-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Baroni.

Additional information

Communicated by Eduardo Souza de Cursi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, L. Kalman filter for attitude determination of a CubeSat using low-cost sensors. Comp. Appl. Math. 37 (Suppl 1), 72–83 (2018). https://doi.org/10.1007/s40314-017-0502-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0502-5

Keywords

Mathematics Subject Classification

Navigation