Skip to main content
Log in

Coorbital capture at arbitrary inclination

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The process of capture in the coorbital region of a solar system planet is studied. Absolute capture likelihood in the 1:1 resonance is determined by randomly constructed statistical ensembles numbering \(7.24\times 10^5\) of massless asteroids that are set to migrate radially from the outer to the inner boundaries of the coorbital region of a Jupiter-mass planet. Orbital states include coorbital capture, ejection, collisions with the Sun and the planet and free-crossing of the coorbital region. The relative efficiency of retrograde capture with respect to prograde capture is confirmed as an intrinsic property of the coorbital resonance. Half the asteroids cross the coorbital region regardless of eccentricity and for any inclination less than \(120^\circ \). We also find that the recently discovered retrograde coorbital of Jupiter, asteroid 2015 BZ509, lies almost exactly at the capture efficiency peak associated with its orbital parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

The authors thank two anonymous reviewers for their comments. F. N. thanks the 2016 Colóquio Brasileiro de Dinâmica Orbital Organizing Committee for their kind invitation to the conference where part of this work was presented. The authors acknowledge support from Grant 2015/17962-5 of São Paulo Research Foundation (FAPESP). The numerical simulations in this work were performed at the Centre for Intensive Computing ‘Mésocentre sigamm’ hosted by the Observatoire de la Côte dAzur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi Namouni.

Additional information

Communicated by Elbert Macau, Antônio Fernando Bertachini de Almeida Prado and Othon Cabo Winter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namouni, F., Morais, H. Coorbital capture at arbitrary inclination. Comp. Appl. Math. 37 (Suppl 1), 65–71 (2018). https://doi.org/10.1007/s40314-017-0489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0489-y

Keywords

Mathematics Subject Classification

Navigation