Skip to main content

Advertisement

Log in

Fractional analog of a chemical system inspired by Braess’ paradox

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the fractional analog of a chemical model arouse from a mathematical paradox attributed to Dietrich Braess. Two basic examples which serve fractional kinetic models as better suited models to the real data sets than the integer-order counterparts are given. Existence and uniqueness of the rebuilt model’s solutions are proved. It is shown that asymptotic stability conditions of the solutions are provided. A comparison is made between two different solution methods and numerical simulations are also presented to exemplify the mathematical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas S, Mahto L, Favini A, Hafayed M (2016) Dynamical study of fractional model of allelopathic stimulatory phytoplankton species. Differ Equ Dyn Syst 24(3):267–280

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmed E, El-Sayed AMA, El-Saka HAA (2007) Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J Math Anal Appl 325:542

    Article  MathSciNet  MATH  Google Scholar 

  • Almeida R, Bastos NRO, Monteiro MTT (2016) Modeling some real phenomena by fractional differential equations. Math Methods Appl Sci 39:4846–4855

    Article  MathSciNet  MATH  Google Scholar 

  • Ameen I, Novati P (2017) The solution of fractional order epidemic model by implicit Adams methods. Appl Math Model 43:78–84

    Article  MathSciNet  Google Scholar 

  • Ansari MA, Arora D (2016) Chaos control and synchronization of fractional order delay-varying computer virus propagation model. Math Methods Appl Sci 39:1197–1205

    Article  MathSciNet  MATH  Google Scholar 

  • Area et al (2015) On a fractional order Ebola epidemic model. Adv Differ Equ 2015:278. doi:10.1186/s13662-015-0613-5

  • Ariza-Hernandez FJ, Sanchez-Ortiz J, Arciga-Alejandre MP, Vivas-Cruz LX (2017) Bayesian analysis for a fractional population growth model. J Appl Math 2017:9654506. doi:10.1155/2017/9654506

  • Arnaut L, Formosinho S, Burrows H (2007) Chemical kinetics: from molecular structure to chemical reactivity. Elsevier, Amsterdam

    Google Scholar 

  • Arshad et al (2017) Effects of HIV infection on CD4+ T-cell population based on a fractional-order model. Adv Differ Equ 2017:92

  • Balcı MA (2016) Fractional virus epidemic model on financial networks. Open Math 14:1074–1086

    MathSciNet  MATH  Google Scholar 

  • Balcı MA (2017) Time fractional capital-induced labor migration model. Physica A 477:91–98

    Article  MathSciNet  Google Scholar 

  • Baleanu D, Golmankhaneh AK, Golmankhaneh AK, Nigmatullin RR (2010) Newtonian law with memory. Nonlinear Dyn 60(1–2):81–86

    Article  MATH  Google Scholar 

  • Bonilla B, Rivero M, Trujillo JJ (2007) On systems of linear fractional differential equations with constant coefficients. Appl Math Comput 187(1):68

    MathSciNet  MATH  Google Scholar 

  • Braess D, Nagurney A, Wakolbinger T (2005) On a paradox of traffic planning. Transp Sci 39:446

    Article  Google Scholar 

  • Carvalho A, Pinto CMA (2017) A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int J Dyn Control 5:168–186

    Article  MathSciNet  Google Scholar 

  • Constantinescu D, Stoicescu M (2011) Phys AUC 21:114

    Google Scholar 

  • Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 2003(54):3413–3442. doi:10.1155/S0161171203301486

  • Demirci E (2017) A fractional order model for obesity epidemic in a non-constant population. Adv Differ Equ 2017:79

    Article  MathSciNet  Google Scholar 

  • Demirci E, Özalp N (2011) A fractional order SEIR model with vertical transmission. Math Comput Model 54:1

    Article  MathSciNet  MATH  Google Scholar 

  • Demirci E, Özalp N (2012) A method for solving differential equations of fractional order. J Comput Appl Math 236:2754

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. In: Morel J-M, Takens F, Teissier B (eds) Lecture notes in mathematics. Springer, Berlin

  • Ding Y, Ye H (2009) A fractional-order differential equation model of HIV infection of CD4+T-Cells. Math Comput Model 50:386

    Article  MathSciNet  MATH  Google Scholar 

  • Du M, Wang Z, Hu H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3:3431. doi:10.1038/srep03431

  • Elsadany AA, Matouk AE (2015) Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization. J Appl Math Comput 49:269–283. doi:10.1007/s12190-014-0838-6

    Article  MathSciNet  MATH  Google Scholar 

  • Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  • Ghaziani RK et al (2016) Stability and dynamics of a fractional order Leslie–Gower prey–predator model. Appl Math Model 40:2075–2086

    Article  MathSciNet  Google Scholar 

  • Glöckle W, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein Dynamics. Biophys J 68(1):46

    Article  Google Scholar 

  • Goulart AGO et al (2017) Fractional derivative models for atmospheric dispersion of pollutants. Physica A 477:9–19

    Article  MathSciNet  Google Scholar 

  • Handam AH, Freihat AA, Zurigat M (2015) The multi-step homotopy analysis method for solving fractional-order model for HIV infection of CD4+T cells. Proyecc J Math 34(4):307–322

    MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Laidler KJ (1963) Reaction kinetics: volume 1-homogeneous gas reactions. Pergamon Press, New York

  • Lepore DM, Baratt C, Schwartz PM (2011) Computational models of chemical systems inspired by braess’ paradox. J Math Chem 49:356

    Article  MathSciNet  MATH  Google Scholar 

  • Magin RL (2004) Fractional calculus in bioengineering. Crit Rev Biomed Eng 32(1):104

    Article  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House Publishers Inc, Connecticut

    Google Scholar 

  • Magin RL, Nigmatullin RR (2013) Fractional dynamics. Cent Eur J Phys 11(6):615

  • Matignon D (1996) Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems applications, vol 2. Lille, France, p 963

  • Metzler R, Schick W, Kilian H-G, Nonnenmacher TF (1995) Relaxation in filled polymers: a fractional calculus approach. J Chem Phys 103(16):7180

    Article  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Nigmatullin RR, Mehaute AL (2005) Is there geometrical/physical meaning of the fractional integral with complex exponent? J Non Cryst Solids 351:2888

    Article  Google Scholar 

  • Nigmatullin RR, Nelson SO (2006) Recognition of the “fractional” kinetics in complex systems: dielectric properties of fresh fruits and vegetables from 0.01 to 1.8 GHz. Signal Process 86:2744

  • Nigmatullin RR, Osokin SI, Smith G (2003) The justified data-curve fitting approach: recognition of the new type of kinetic equations in fractional derivatives from analysis of raw dielectric data. J Phys D Appl Phys 36:2281

    Article  Google Scholar 

  • Odibat ZM (2010) Analytic study on linear systems of fractional differential equations. Comput Math Appl 59:1171

    Article  MathSciNet  MATH  Google Scholar 

  • Ozalp N, Koca I (2012) A fractional order nonlinear dynamical model of interpersonal relationships. Adv Differ Equ 2012(1):189

  • Pan M et al (2016) Modeling heat transport in nanofluids with stagnation point flow using fractional calculus. Appl Math Model 40:8974–8984

    Article  MathSciNet  Google Scholar 

  • Penchina CM, Penchina LJ (2003) The Braess paradox in mechanical, traffic, and other networks. Am J Phys 71:479

    Article  Google Scholar 

  • Pinto CMA, Carvalho ARM (2017) A latency fractional order model for HIV dynamics. J Comput Appl Math 312:240–256

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Podlubny I (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 5(4):367–386

  • Rostamy D, Mottaghi E (2016) Stability analysis of a fractional-order epidemics model with multiple equilibriums. Adv Differ Equ 2016:170

    Article  MathSciNet  Google Scholar 

  • Samko G, Kilbas A, Marichev O (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  • Sarwar S, Rashidi MM (2016) Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method. Waves Random Complex Media 26(3):365–382. doi:10.1080/17455030.2016.1158436

    Article  MathSciNet  MATH  Google Scholar 

  • Shen C, Zhou H, Yang L (2016) Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter. Math Methods Appl Sci 39:4504–4511

    Article  MathSciNet  MATH  Google Scholar 

  • Sofuoglu Y, Ozalp N (2017) Fractional order bilingualism model without conversion from dominant unilingual group to bilingual group. Differ Equ Dyn Syst 25(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2013) Review of some promising fractional physical models. Int J Mod Phys B 27(9):1330005

    Article  MathSciNet  MATH  Google Scholar 

  • Vicente B, Nori M, Fogler HS (2007) Solutions manual for elements of chemical reaction engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Weisstein EW (2013) Root-mean-square. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Root-Mean-Square.html

  • Wright MR (1999) Fundamental chemical kinetics: an explanatory introduction to the concepts. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Xianbing C et al (2016) Fractional-order model of the disease psoriasis: a control based mathematical approach. J Syst Sci Complex 29:1565–1584

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H (2009) Analytical approximations for a population growth model with fractional order. Commun Nonlinear Sci Numer Simul 14:1978

    Article  MATH  Google Scholar 

  • Zhang S, Cai B, Xu B (2015) Variable separation method for nonlinear time fractional biological population model. Int J Numer Methods Heat Fluid Flow 25(7):1531–1541. doi:10.1108/HFF-03-2013-0092

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Unit of Ankara University with the grant number 17L0430006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Ozturk Mizrak.

Additional information

Communicated by José Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizrak, O.O., Ozalp, N. Fractional analog of a chemical system inspired by Braess’ paradox. Comp. Appl. Math. 37, 2503–2518 (2018). https://doi.org/10.1007/s40314-017-0462-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0462-9

Keywords

Mathematics Subject Classification

Navigation