Skip to main content
Log in

A study on the local convergence and dynamics of the two-step and derivative-free Kung–Traub’s method

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present a local convergence analysis of a two-step and derivative-free Kung–Traub’s method, which is based on a parameter and has fourth order of convergence. Using basins of attraction of the method, dynamical behavior of the scheme is studied and the best choice of the parameter is found in the sense of reliability and stability. Some illustrative examples show that as the parameter gets close to zero, radius of convergence of the method becomes larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amat S, Bermudez C, Busquier S, Plaza S (2008) On the dynamics of the Euler iterative function. J Appl Math Comput 197:725–732

    Article  MathSciNet  MATH  Google Scholar 

  • Amat S, Busquier S, Magreñán ÁA (2015) Improving the dynamics of Steffensen-type methods. Appl Math Inf Sci 9(5):2403–2408

    MathSciNet  Google Scholar 

  • Amat S, Busquier S, Plaza S (2004) Review of some iterative root-finding methods from a dynamical point of view. Sci Ser A Math Sci 10:3–35

    MathSciNet  MATH  Google Scholar 

  • Argyros IK (2007) Computational theory of iterative methods. In: Chui CK, Wuytack L (eds) Series: studies in computational mathematics, vol 15. Elservier Publ. Co, New York

    Google Scholar 

  • Argyros IK, Hilout S (2009) An improved local convergence analysis for a two-step Steffensen-type method. J Appl Math Comput 30:237–245

    Article  MathSciNet  MATH  Google Scholar 

  • Argyros IK, Kansal M, Kanwar V (2016a) Ball convergence for two optimal eighth-order methods using only the first derivative. Int J Appl Comput Math. doi:10.1007/s40819-016-0196-1

  • Argyros IK, Magreñán ÁA, Orcos L (2016b) Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation. J Math Chem. doi:10.1007/s10910-016-0605-z

  • Argyros IK, Ren H (2009) On an improved local convergence analysis for the Secant method. Numer Algor 52:257–271

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard P (1984) Complex analytic dynamics on the Riemann sphere. Bull Am Math Soc 11(1):85–141

    Article  MathSciNet  MATH  Google Scholar 

  • Chicharro F, Cordero A, Gutiérrez JM, Torregrosa JR (2013a) Complex dynamics of derivative-free methods for nonlinear equations. J Appl Math Comput 219:7023–7035

  • Chicharro FI, Cordero A, Torregrosa JR (2013b) Drawing dynamical and parameters planes of iterative families and methods. Sci World J, Article ID 780153. doi:10.1155/2013/780153

  • Chicharro F, Cordero A, Torregrosa JR (2015) Dynamics and fractal dimension of Steffensen-type methods. Algorithms 8:271–279

    Article  MathSciNet  Google Scholar 

  • Cordero A, Lotfi T, Mahdiani K, Torregrosa JR (2014) Two optimal general classes of iterative methods with eighth-order. Acta Appl Math 134:61–74

    Article  MathSciNet  MATH  Google Scholar 

  • Cordero A, Lotfi T, Torregrosa JR, Assari P, Mahdiani K (2014b) Some new bi-accelerator two-point methods for solving nonlinear equations. Comput Appl Math. doi:10.1007/s40314-014-0192-1

  • Cordero A, Magreñán ÁA, Quemada C, Torregrosa JR (2016) Stability study of eighth-order iterative methods for solving nonlinear equations. J Comput Appl Math 291:348–357

    Article  MathSciNet  MATH  Google Scholar 

  • Cordero A, Soleymani F, Torregrosa JR, Shateyi S (2014c) Basins of attraction for various Steffensen-type methods. J Appl Math, Article ID 539707. doi:10.1155/2014/539707

  • Emerenko A, Lyubich M (1990) The dynamics of analytic transformations. St Petersburg Math J 1(3):563–634

    MathSciNet  Google Scholar 

  • Ezquerro JA, Grau-Sanchez M, Hernandez-Veron MA, Noguera M (2015) A family of iterative methods that uses divided differences of first and second orders. Numer Algor. doi:10.1007/s11075-015-9962-0

  • Grau-Sanchez M, Noguera M, Gutiérrez JM (2010) On some computational orders of convergence. Appl Math Lett 23:472–478

    Article  MathSciNet  MATH  Google Scholar 

  • Kantorovich LV, Akilov GP (1982) Functional analysis. Pergamon, Oxford

    MATH  Google Scholar 

  • Kung HT, Traub JF (1974) Optimal order of one-point and multipoint iteration. J Assoc Comput Math 21:643–651

    Article  MathSciNet  MATH  Google Scholar 

  • Lotfi T, Magreñán ÁA, Mahdiani K, Javier Rainer J (2015) A variant of Steffensen-King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach. J Appl Math Comput 252:347–353

    Article  MathSciNet  MATH  Google Scholar 

  • Magreñán ÁA, Argyros IK (2016) On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence. J Comput Appl Math 298:236–251

    Article  MathSciNet  MATH  Google Scholar 

  • Neta B, Scott M, Chun C (2012) Basin attractors for various methods for multiple roots. Appl Math Comput 218:5043–5066

    MathSciNet  MATH  Google Scholar 

  • Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables, vol 30. SIAM, Philadelphia

    MATH  Google Scholar 

  • Ren H, Argyros IK (2015) On the convergence of King-Werner-type methods of order \( 1+\sqrt{2} \) free of derivatives. Appl Math Comput 256:148–159

    MathSciNet  MATH  Google Scholar 

  • Scott M, Neta B, Chun C (2011) Basin attractors for various methods. Appl Math Comput 218:2584–2599

    MathSciNet  MATH  Google Scholar 

  • Sharma JR, Arora H (2016) Efficient derivative-free numerical methods for solving systems of nonlinear equations. Comput Appl Math 35:269–284

    Article  MathSciNet  MATH  Google Scholar 

  • Steffensen JF (1933) Remarks on iterations. Scand Actuar J 16(1):64–72

    Article  MATH  Google Scholar 

  • Stewart BD (2001) Attractor basins of various root-finding methods. M.S. thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey

  • Traub JF (1982) Iterative methods for the solution of equations. Chelsea Publishing Company, New York

    MATH  Google Scholar 

  • Varona JL (2002) Graphic and numerical comparison between iterative methods. Math Intelligencer 24(1):37–46

    Article  MathSciNet  MATH  Google Scholar 

  • Weerakoon S, Fernando TGI (2000) A variant of Newton’s method with accelerated third order convergence. Appl Math Lett 13:87–93

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the referee’s comments which lead to the improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Lotfi.

Additional information

Communicated by Joerg Fliege.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiseh, H., Lotfi, T. & Allahviranloo, T. A study on the local convergence and dynamics of the two-step and derivative-free Kung–Traub’s method. Comp. Appl. Math. 37, 2428–2444 (2018). https://doi.org/10.1007/s40314-017-0458-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0458-5

Keywords

Mathematics Subject Classification

Navigation