Skip to main content
Log in

A relaxed two-step splitting iteration method for computing PageRank

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we extend the two-step matrix splitting iteration approach by introducing a new relaxation parameter. The main idea is based on the inner–outer iteration for solving the PageRank problems proposed by Gleich et al. (J Sci Comput 32(1): 349–371, 2010) and Bai (Numer Algebra Cont Optim 2(4): 855–862, 2012) and the two-step splitting iteration presented by Gu et al. (Appl Math Comput 271: 337–343, 2015). The theoretical analysis results show that the proposed method is efficient. Numerical experiments demonstrate that the convergence performances of the method are better than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai Z-Z, Golub GH, Lu L-Z, Yin J-F (2004) Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J Sci Comput 26(3):844–863

    Article  MathSciNet  MATH  Google Scholar 

  • Bai Z-Z (2012) On convergence of the inner-outer iteration method for computing PageRank. Numer Algebra Cont Optim 2(4):855–862

    Article  MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Sun J-C, Wang D-R (1996) A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput Math Appl 32(12):51–76

    Article  MathSciNet  MATH  Google Scholar 

  • Berkhin P (2005) A survey on PageRank computing. Internet Math 2(1):73–120

    Article  MathSciNet  MATH  Google Scholar 

  • Capizzano SS (2005) Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation. SIAM J Matrix Anal Appl 27(2):305–312

    Article  MathSciNet  MATH  Google Scholar 

  • Cottle RW, Dantzig G (1968) Complementary pivot theory of mathematical programming. Linear Algebra Appl 1:103–125

    Article  MathSciNet  MATH  Google Scholar 

  • Cottle RW, Pang J-S, Stone RE (1992) The linear complementarity problem. Academic Press, New York

    MATH  Google Scholar 

  • Fan C, Simpson O (2015) Distributed algorithms for finding local clusters using heat kernel pagerank, algorithms and models for the web graph. Springer International Publishing, pp 177–189

  • Gleich DF, Gray AP, Greif C, Lau T (2010) An inner-outer iteration for computing PageRank. SIAM J Sci Comput 32(1):349–371

    Article  MathSciNet  MATH  Google Scholar 

  • Golub GH, Greif C (2006) An Arnoldi-type algorithm for computing PageRank. BIT 46(4):759–771

    Article  MathSciNet  MATH  Google Scholar 

  • Golub GH, Van Loan C (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Gu C-Q, Xie F, Zhang K (2015) A two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 278(15):19–28

    Article  MathSciNet  MATH  Google Scholar 

  • Huang N, Ma C-F (2015) Parallel multisplitting iteration methods based on M-splitting for the PageRank problem. Appl Math Comput 271:337–343

    MathSciNet  Google Scholar 

  • Jia Z-X (1997) Refined iterative algorithms based on Arnoldis process for large unsymmetric eigenproblems. Linear Algebra Appl 259(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Kamvar S, Haveliwala T, Manning C, Golub GH (2003) Extrapolation methods for accelerating PageRank computations. In: Twelfth International World Wide Web Conference, Budapest, Hungary, pp 261–270

  • Kamvar S, Haveliwala T, Golub GH (2004) Adaptive methods for the computation of PageRank. Linear Algebra Appl 386(15):51–65

    Article  MathSciNet  MATH  Google Scholar 

  • Kamvar S, Haveliwala T, Manning C, Golub GH (2003) Exploiting the block structure of the web for computing PageRank. Technical Report, Stanford

  • Langville AN, Meyer CD (2005) A survey of eigenvector methods for Web information retrieval. SIAM Rev 47(1):135–161

    Article  MathSciNet  MATH  Google Scholar 

  • Langville A, Meyer C (2006) Googles PageRank and beyond: the science of search engine rankings. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Langville A, Meyer C (2006) A reordering for the PageRank problem. SIAM J Sci Comput 27(6):2112–2120

    Article  MathSciNet  MATH  Google Scholar 

  • Mangasarian OL, Meyer RR (2006) Absolute value equations. Linear Algebra Appl 419(2):359–367

    Article  MathSciNet  MATH  Google Scholar 

  • Mangasarian OL (2007) Absolute value programming. Comput Optim Appl 36(1):43–53

    Article  MathSciNet  MATH  Google Scholar 

  • Morrison JL, Breitling R, Higham DJ, Gilbert DR (2005) GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinform 6:233

    Article  Google Scholar 

  • Moosaei H, Ketabchi S, Noor MA (2015) Some techniques for solving absolute value equations. Appl Math Comput 268:696–705

    Article  MathSciNet  Google Scholar 

  • Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web, Stanford Digital Libraries SIDL-WP-1999-0120, Stanford

  • Rohn J (2012) An algorithm for computing all solutions of an absolute value equation. Optim Lett 6(5):851–856

    Article  MathSciNet  MATH  Google Scholar 

  • Sauer T (2005) Numerical analysis. Addison Wesley Publication, USA

    Google Scholar 

  • Skardal PS, Taylor D, Sun J, Arenas A (2015) Collective frequency variation in complex networks and Google’s PageRank, arXiv preprint arXiv:1510.02018

  • Stewart W (1994) Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Wu G, Wei Y-M (2007) A power-Arnoldi algorithm for computing PageRank. Numer Linear Algebra Appl 14(7):521–546

    Article  MathSciNet  MATH  Google Scholar 

  • Yin J-F, Yin G-J, Ng MK (2012) On adaptively accelerated Arnoldi method for computing PageRank. Numer Linear Algebra Appl 19(1):73–85

    Article  MathSciNet  MATH  Google Scholar 

  • Yong L-Q (2016) A smoothing newton method for absolute value equation. Int J Control Autom 9(2):119–132

    Article  MathSciNet  Google Scholar 

  • Yong L-Q, Liu S-Y, Zhang S-M (2011) A new method for absolute value equations based on harmony search algorithm. ICIC Express Lett Part B Appl 2:1231–1236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Feng Ma.

Additional information

Communicated by Jinyun Yuan.

The Project was supported by the National Natural Science Foundation of China (Grant Nos. 11071041, 11201074), Fujian Natural Science Foundation (Grant Nos. 2016J01005, 2015J01578), and Outstanding Young Training Plan of Fujian Province universities (Grant No. 15kxtz13, 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YJ., Ma, CF. A relaxed two-step splitting iteration method for computing PageRank. Comp. Appl. Math. 37, 221–233 (2018). https://doi.org/10.1007/s40314-016-0338-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0338-4

Keywords

Mathematics Subject Classification

Navigation