Skip to main content
Log in

Optimal weed population control using nonlinear programming

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A dynamic optimization model for weed infestation control using selective herbicide application in a corn crop system is presented. The seed bank density of the weed population and frequency of dominant or recessive alleles are taken as state variables of the growing cycle. The control variable is taken as the dose–response function. The goal is to reduce herbicide usage, maximize profit in a pre-determined period of time and minimize the environmental impacts caused by excessive use of herbicides. The dynamic optimization model takes into account the decreased herbicide efficacy over time due to weed resistance evolution caused by selective pressure. The dynamic optimization problem involves discrete variables modeled as a nonlinear programming (NLP) problem which was solved by an active set algorithm (ASA) for box-constrained optimization. Numerical simulations for a case study illustrate the management of the Bidens subalternans in a corn crop by selecting a sequence of only one type of herbicide. The results on optimal control discussed here will give support to make decision on the herbicide usage in regions where weed resistance was reported by field observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson DD, Nissen SJ, Martin AR (1998) Mechanism of primisulfuron resistance in a shattercane (Sorghum bicolor) biotype. Weed Sci 46(1):158–162

    Google Scholar 

  • Birgin EG, Martínez JM (2002) Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput Optim Appl 23(1):101–125

    Article  MathSciNet  MATH  Google Scholar 

  • Birgin EG, Martínez JM, Raydan M (2000) Nonmonotone spectral projected gradient methods on convex sets. SIAM J Optim 10(4):1196–1211

    Article  MathSciNet  MATH  Google Scholar 

  • Britton NF (2003) Essential mathematical biology. Springer Undergraduate Mathematics Series, London, UK

    Book  MATH  Google Scholar 

  • Byrd RB, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

    Article  MathSciNet  MATH  Google Scholar 

  • Carvalho FT, Moretti TB, Souza PA (2010) Eficácia e seletividade de associações de herbicidas utilizados em pós-emergência na cultura do milho. Rev Bras Herbic 9(1):35–41

    Google Scholar 

  • Christensen S, Streibig JC, Haas H (1990) Interaction between herbicide activity and weed suppression by spring barley varieties. In: Seventh European Weed Research Society Symposium, Helsinki, 367–374

  • Christiaans T, Eichner T, Pething R (2007) Optimal pest control in agriculture. J Econ Dyn Control 31(12):3965–3985

    Article  MathSciNet  MATH  Google Scholar 

  • Christoffoleti PJ (2002) Curvas de dose-resposta de biótipos resistente e suscetível da Bidens pilosa L. aos herbicidas inibidores da ALS. Sci Agric 59(3):513–519

    Article  Google Scholar 

  • Christoffoleti PJ (2008) Aspectos de resistêcia de plantas daninhas a herbicidas, 3rd edn. Associação Brasileira de Ação à Resistência de Plantas Daninhas, Piracicaba, SP

    Google Scholar 

  • Cousens R (1985) A simple model relating yield loss to weed density. Ann Appl Biol 107(2):239–252

    Article  Google Scholar 

  • Dan HA, Procópio ALL, Dan SO, Finotti TR, Assis RL (2010) Seletividade do atrazine à cultura do milheto Pennisetum glaucum, Planta Daninha, 28  no. spe, 1117–1124

  • Diggle AJ, Neve PB, Smith FP (2003) Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res 43(5):371–382

    Article  Google Scholar 

  • Gazziero DLP, Santos AMB, Voll E, Adegas FS (2008) Resistência de picão—preto (Bidens subalternans) ao herbicida atrazine, in: Congresso Brasileiro da Ciência das Plantas Daninhas e Congresso de la Associacón Latinoamericana de Malezas, Ouro Preto, 7

  • Gressel J (2009) Evolving understanding of the evolution of herbicide resistance. Pest Manag Sci 65(11):1164–1173

    Article  Google Scholar 

  • Gressel J, Segel LA (1978) The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J Theor Biol 75(3):349–371

    Article  MathSciNet  Google Scholar 

  • Hager WW (2009) Source code for ASA-CG version 1.3, Available at: http://www.math.ufl.edu/~hager/papers/Software

  • Hager WW, Zhang H (2006) A new active set algorithm for box constrained optimization. J Optim 17(2):526–557

    MathSciNet  MATH  Google Scholar 

  • Heap I (2011) The international survey of herbicide resistant weeds, Available at: http://www.weedscience.com

  • IMEA (2014) Custo de produ ção de milho—Safra 2013/14, Available at: http://www.imea.com.br/upload/publicacoes/arquivos/R410-2013-01-CPMilho.pdf

  • Jones R, Cacho OJ (2000) A dynamic optimization model of weed control. 44th Annual Conference of the Australian Agricultural and Resource Economics. Australia, Sydney, pp 1–17

  • Jones R, Cacho OJ, Sinden J (2006) The importance of seasonal variability and tactical responses to risk on estimating the economic benefits of integrated weed management. Agric Econ 35(3):245–256

    Article  Google Scholar 

  • Karam D (2011) Manejo de plantas daninhas resistentes na cultura do milho. Plantio Direto 20(124):40–46

    Google Scholar 

  • Karam D, Lara JFR, Magalhães PC, Filho IAP, Cruz MB (2004) Seletividade de carfentrazone-ethyl aos milhos doce e normal. Rev Bras Milho e Sorgo 3(1):62–68

    Article  Google Scholar 

  • Kennedy JOS (1986) Dynamic programming: applications to agriculture and natural resources. Elsevier, New York, NY

    Book  Google Scholar 

  • Kotani K, Kakinaka M, Matsuda H (2009) Dynamic economic analysis on invasive species management: Some policy implications of catchability. Math Biosci 220(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Kotani K, Kakinaka M, Matsuda H (2011) Optimal invasive species management under multiple uncertainties. Math Biosci 233(1):32–46

    Article  MathSciNet  MATH  Google Scholar 

  • Lin CJ, Moré JJ (1999) Newton’s method for large bound-constrained optimization problems. SIAM J Optim 9(4):1100–1127

    Article  MathSciNet  MATH  Google Scholar 

  • Maxwell BD, Roush ML, Radosevich SR (1990) Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol 4(1):2–13

    Google Scholar 

  • Medd R, Nicol HI, Cook A (1995) Seed kill and its role in weed management system: A case study of seed production, seed banks and population growth of avena species (wild oats). Ninth European Weed Research Society Symposium, Budapest 2:627–632

  • Moss S (2010) Detecting herbicide resistance, Available at: http://www.hracglobal.com/Publications/DetectingHerbicideResistance/tabid/229/~Default.aspx

  • Neve P, Norsworthy JK, Smith KL, Zelaya IA (2011) Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res 51(1):99–112

    Article  Google Scholar 

  • Oliveira AT, Santos JB, Camelo GM, Botelho RG, Lázri TM (2009) Efeito da interação do nicosulfuron e Chlorpyrifos sobre o banco de sementes e os atributos microbianos do solo. Rev Bras Ciência do Solo 33(3):563–570

    Article  Google Scholar 

  • Pandey S, Medd R (1990) Integration of seed and plant kill tactics for control of wild oats: An economic evaluation. Agric Syst 34(1):65–76

    Article  Google Scholar 

  • Powles SB, Preston C (2011) Herbicide cross resistance and multiple resistance in plants, Available at: http://www.hracglobal.com/~Publications/~HerbicideCrossResistanceandMultipleResistance~/tabid/224/Default.aspx

  • Powles SB, Shaner DL (2001) Herbicide resistance and world grains. CRC Press, London, UK

    Book  Google Scholar 

  • Rafikov M, Balthazar JM (2005) Optimal pest control problem in population dynamics. Comput Appl Math 24(1):65–81

    MathSciNet  MATH  Google Scholar 

  • Ralebitso TK, Senior E, Verseveld HWV (2002) Microbial aspects of atrazine degradation in natural environments. Biodegradation 13(1):11–19

    Article  Google Scholar 

  • Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9(1):218–227

    Google Scholar 

  • Streibig JC, Kudsk P (1993) Herbicide bioassays. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tind T, Mathiesen TJ, Jensen JE, Ritz C, Streibig JC (2009) Using a selectivity index to evaluate logarithmic spraying in grass seed crops. Pest Manag Sci 65(11):1257–1262

    Article  Google Scholar 

  • Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50(6):700–712

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support given by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under the Programa Nacional de Cooperação Acadêmica (PROCAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elenice W. Stiegelmeier.

Additional information

Communicated by Natasa Krejic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiegelmeier, E.W., Oliveira, V.A., Silva, G.N. et al. Optimal weed population control using nonlinear programming. Comp. Appl. Math. 36, 1043–1065 (2017). https://doi.org/10.1007/s40314-015-0280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0280-x

Keywords

Mathematics Subject Classification

Navigation