Computational and Applied Mathematics

, Volume 36, Issue 2, pp 843–857 | Cite as

Design of new \(4\times 4\) S-box from finite commutative chain rings

  • Tariq Shah
  • Saira Jahangir
  • Antonio Aparecido de Andrade
Article
  • 154 Downloads

Abstract

Substitution boxes (S-boxes) are the fundamental mechanisms in symmetric key cryptosystems. These S-boxes guarantee that the cryptosystem is cryptographically secure and make them nonlinear. The S-boxes used in conventional and modern cryptography are mostly constructed over finite Galois field extensions of binary Field \(\mathbb {F}_{2}\). We have presented a novel construction scheme of S-boxes which is based on the elements of subgroups of multiplicative groups of units of the commutative finite chain rings of type \(\frac{\mathbb {F}_{2}[u]}{\langle u^{k}\rangle }\), where \(2\le k\le 8\). Majority logic criterion (MLC) is applied on the apprehended S-boxes owing to, checked their strength.

Keywords

S-box Finite chain ring Unit elements Subgroup of order 16 Majority logic criterion 

Mathematics Subject Classification

34H10 74H65 90B06 

References

  1. Abualrub T, Saip I (2007) Cyclic coacquired a great consideration in algebraic coding theory over the rings \(\mathbb{F}_{2}+u \mathbb{F}_{2}\) and \(\mathbb{F}_{2}+u\mathbb{F}_{2}+u^{2}\mathbb{F}_{2}\). Des Codes Cryptogr 42:273–287MathSciNetCrossRefGoogle Scholar
  2. Abu Dahrouj FM (2008) Negacyclic and constacyclic codes over finite chain rings. Master of Mathematics Thesis, The Islamic University of Gaza, GazaGoogle Scholar
  3. Adams C, Tavares S (1990) The structured design of cryptographically good S-boxes. J Cryptol 3:27–41MathSciNetCrossRefMATHGoogle Scholar
  4. Al-Ashker M (2005) Simplex codes over the ring \( \sum _{n=0}^{s}u^{n}\mathbb{F}_{2}\). Turk J Math 29(3):221–233MathSciNetMATHGoogle Scholar
  5. Al-Ashker M (2005) Simplex codes over \(\mathbb{F}_{2}+u \mathbb{F}_{2}\). Arab J Sci Eng 3:227–285Google Scholar
  6. Al-Ashker M, Hamoudeh M (2011) Cyclic codes over \( \mathbb{F}_{2}+u\mathbb{F}_{2}+\cdots +u^{k-1}\mathbb{F}_{2}\). Turk J Math 33:737–749MATHGoogle Scholar
  7. Al-Ashker M, Chen J (2013) Cyclic codes of arbitrary length over \(\mathbb{F}_{q}+u\mathbb{F}_{q}+\cdots +u^{k-1}\mathbb{F}_{q}\). Palistine J Math 2(1):72–80Google Scholar
  8. Andrade AA, Palazzo R Jr (1999) Construction and decoding of BCH codes over finite rings. Linear Algebra Appl 286:69–85MathSciNetCrossRefMATHGoogle Scholar
  9. Bilgin B, Nikova S, Nikov V, Rijmen V, Stutz G (2012) Thershold Implementations of all \(3\times 3\) S-boxes. In: Cryptographic Hardware and Embedded Systems. Springer, New York, pp 76–91Google Scholar
  10. Bonnecaze A, Udaya P (1999) Cyclic codes and self dual codes over \(\mathbb{F}_{2}+u\mathbb{F}_{2}\). IEEE Trans Inf Theory 45:1250–1255MathSciNetCrossRefMATHGoogle Scholar
  11. Clark WE, Liang JJ (1973) Enumeration of finite commutative chain rings. J Algebra 27(3):445–453MathSciNetCrossRefMATHGoogle Scholar
  12. Cohen S, Niederreiter H (2009) Finite fields and applications. Cambridge University Press, LondonGoogle Scholar
  13. Cui L, Cao Y (2007) A new S-box structure named affine-power-affine. Int J Innov Comput I 3(3):45–53Google Scholar
  14. Daemen J, Rijmen V (2000) The block cipher Rijndael. Smart Card Research and Applications, Lecture Notes in Computer Science 1820. Springer, New York, pp 277–284Google Scholar
  15. Gupta KC, Sarkar P (2005) Improved construction of nonlinear resilient S-boxes. IEEE Trans Inf Theory 15(1):339–348MathSciNetCrossRefMATHGoogle Scholar
  16. Hou X (2001) Finite commutative chain rings. Finite Fields Appl. 7:382–396MathSciNetCrossRefMATHGoogle Scholar
  17. Hussain I, Shah T (2013) Literature survey on nonlinear components and chaotic nonlinear compotents of block cipher. Nonlinear dyn 74:869–904CrossRefMATHGoogle Scholar
  18. Hussain I, Shah T, Mahmood H, Gondal MA, Bhatti UY (2011) Some analysis of S-box based on residue of prime number. Proc Pak Acad Sci 48(2):111–115MathSciNetGoogle Scholar
  19. Hussain I, Shah T, Gondal MA, Mahmood H (2012) Generalized majority logic criterion to analyze the statistical strength of S-boxes. Z Naturforsch A 67a:282–288Google Scholar
  20. Kim J, Phan RCW (2009) Advanced differential-style crypt-analysis of the NSA’s skipjack block cipher. Cryptologia 33(3):246–270CrossRefMATHGoogle Scholar
  21. Naji A (2002) Linear codes over \({\mathbb{F}}_{2}+u{\mathbb{F}} _{2}+u^{2}{\mathbb{F}}_{2}\) of constant lee weight. The second conference of the Islamic University on Mathematical Science-GazaGoogle Scholar
  22. Nyberg K (1991) Perfect nonlinear S-boxes. In: Advances in cryptology—EUROCRYPT91. Lecture Notes in Computer Science, vol 547. Springer, New York pp 378–386Google Scholar
  23. Qian J, Zhang L, Zhu S (2005) Cyclic codes over \( \mathbb{F}_{p}+u\mathbb{F}_{p}+\cdots +u^{k-1}\mathbb{F}_{p}\). IEICE Trans Fundam 3:779–795Google Scholar
  24. Qian J, Zhang L, Zhu S (2006) (1+u) constacyclic and cyclic over \(\mathbb{F}_{2}+u\mathbb{F}_{2}\). Appl Math Lett 19(8):820–823MathSciNetCrossRefGoogle Scholar
  25. Qian J, Zhang L, Zhu S (2006) Constacyclic and cyclic codes over \({\mathbb{F}}_{2}+u{\mathbb{F}}_{2}+u^{2}{\mathbb{F}}_{2}\). IEICE Trans Fundam 6:1863–1885CrossRefGoogle Scholar
  26. Shah T, Hussain I, Gondal MA, Mahmood H (2011) Statistical analysis of S-box in image encryption applications based on majority logic criterion. Inter J Phys Sci 6(16):4110–4127Google Scholar
  27. Shah T, Qamar A, Andrade AA (2012a) Constructions and decoding of a sequence of BCH codes. Math Sci Res J 16(9):234–250MathSciNetMATHGoogle Scholar
  28. Shah T, Qamar A, Andrade AA (2012b) Construction and decoding of BCH codes over chain of commutative rings. Math Sci 6(51):14MathSciNetMATHGoogle Scholar
  29. Shah T, Qamar A, Hussain I (2013) Substitution box on maximal cyclic subgroup of units of a Galois ring. Z Naturforsch A 68a:567–572Google Scholar
  30. Shanbhag AG, Kumar PV, Helleseth T (1996) Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some q-ary sequences. IEEE Trans Inf Theory IT–42(1):250–254MathSciNetCrossRefMATHGoogle Scholar
  31. Shankar P (1979) On BCH codes over arbitrary integer rings. IEEE Trans Inf Theory IT–25(4):480–483MathSciNetCrossRefMATHGoogle Scholar
  32. Tran MT, Bui DK, Doung AD (2008) Gray S-box for advanced encryption standard. Inter Conf Comput Intell Secur 1:253–256Google Scholar
  33. Yi X, Cheng SX, You XH, Lam KY (2002) A method for obtaining cryptographically strong \(8\times 8\) S-boxes. Int Conf Infor Netw Appl 2(3):14–20Google Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2015

Authors and Affiliations

  • Tariq Shah
    • 1
  • Saira Jahangir
    • 1
  • Antonio Aparecido de Andrade
    • 2
  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of MathematicsSão Paulo State UniversitySão PauloBrazil

Personalised recommendations