Computational and Applied Mathematics

, Volume 36, Issue 2, pp 859–875 | Cite as

Incompatible modes with Cartesian coordinates and application in quadrilateral finite element formulation

Article

Abstract

Incompatible modes with parametric coordinates are widely used in finite element method to develop low-order elements with high accuracy. But it leads to unstable results and must be used along with the constant Jacobian matrix technique to assure convergence. The incompatible modes with Cartesian coordinates are proposed as an alternative. The advantage is that the present method can improve the accuracy, assure the convergence of the elements without additional correction technique and greatly reduce the amount of calculation. With this method, a new quadrilateral element IMQ6 is formulated within the quasi-conforming scheme. Both theoretical and numerical analyses are conducted and it is proved that the present incompatible modes improve the element’s performance in both precision and efficiency.

Keywords

Incompatible modes Cartesian coordinate Quasi-conforming Convergence Patch test Quadrilateral element Finite element 

Mathematics Subject Classification

74S05 

Notes

Acknowledgments

This work was funded by the Educational Department of Liaoning Province (No. L2014031), the Project of the National Natural Science Foundation of China (No. 11272075), and the Fundamental Research Funds for the Central Universities (No. DUT13RC(3)50, DUTI5RC(5)44). These supports are gratefully acknowledged. We would like to thank Dr. John Paul Villforth for the editorial help. Many thanks are due to the referees for their valuable comments.

References

  1. Belytschko T, Tsay C-S (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Methods Eng 19:405–419. doi: 10.1002/nme.1620190308 CrossRefMATHGoogle Scholar
  2. Cen S, Fu XR, Zhou MJ (2011) 8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput Methods Appl Mech Eng 200:2321–2336. doi: 10.1016/j.cma.2011.04.014 MathSciNetCrossRefMATHGoogle Scholar
  3. Cen S, Zhou M-J, Fu X-R (2011b) A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Comput Struct 89:517–528. doi: 10.1016/j.compstruc.2010.12.010 CrossRefGoogle Scholar
  4. César de Sá JMA, Natal Jorge RM, Fontes Valente RA, Almeida Areias PM (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53:1721–1750. doi: 10.1002/nme.360 CrossRefMATHGoogle Scholar
  5. Choi C-K, Lee T-Y, Chung K-Y (2002) Direct modification for non-conforming elements with drilling DOF. Int J Numer Methods Eng 55:1463–1476. doi: 10.1002/nme.550 CrossRefMATHGoogle Scholar
  6. Dujc J, Brank B, Ibrahimbegovic A (2013) Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids. Int J Numer Methods Eng 94:1075–1098. doi: 10.1002/nme.4475 MathSciNetCrossRefMATHGoogle Scholar
  7. Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in the finite element analysis of plates. Nucl Eng Des 46:203–222. doi: 10.1016/0029-5493(78)90184-X CrossRefGoogle Scholar
  8. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413–1418. doi: 10.1002/nme.1620150914 MathSciNetCrossRefMATHGoogle Scholar
  9. Irons BM, Razzaque A (1972) Experience with the patch test for convergence of finite elements. In: Azid AK (ed) The mathematical foundations of the finite element method with applications topartial differential equations. Academic, New York, pp 557–587Google Scholar
  10. Mostafa M, Sivaselvan MV, Felippa CA (2013) Reusing linear finite elements in material and geometrically nonlinear analysis—application to plane stress problems. Finite Elem Anal Des 69:62–72. doi: 10.1016/j.finel.2013.02.002 MathSciNetCrossRefMATHGoogle Scholar
  11. Peters JF, Heymsfield E (2004) FEM formulation of four and five noded elements using a linearly varying stress assumption. Int J Solids Struct 41:1991–2009. doi: 10.1016/j.ijsolstr.2003.11.019 CrossRefMATHGoogle Scholar
  12. Pian TH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333–1336CrossRefGoogle Scholar
  13. Rezaiee-Pajand M, Karkon M (2012) Two efficient hybrid-Trefftz elements for plate bending analysis. Lat Am J Solids Struct 9:43–67CrossRefMATHGoogle Scholar
  14. Rezaiee-Pajand M, Yaghoobi M (2012) Formulating an effective generalized four-sided element. Eur J Mech A/Solids 36:141–155. doi: 10.1016/j.euromechsol.2012.02.012 MathSciNetCrossRefMATHGoogle Scholar
  15. Rezaiee-Pajand M, Yaghoobi M (2014) An efficient formulation for linear and geometric non-linear membrane elements. Lat Am J Solids Struct 11:1012–1035CrossRefGoogle Scholar
  16. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638. doi: 10.1002/nme.1620290802 MathSciNetCrossRefMATHGoogle Scholar
  17. Sze KY, Liu GH, Fan H (2010) Four- and eight-node hybrid-Trefftz quadrilateral finite element models for helmholtz problem. Comput Methods Appl Mech Eng 199:598–614. doi: 10.1016/j.cma.2009.10.012 MathSciNetCrossRefMATHGoogle Scholar
  18. Tang L, Chen W, Liu Y (1980) Quasi-conforming elements for finite element analysis. J Dalian Univ Technol 19:19–35Google Scholar
  19. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219. doi: 10.1002/nme.1620100602 CrossRefMATHGoogle Scholar
  20. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ (ed) Numerical and computer methods in structural mechanics. Academic, New York, pp 43–57Google Scholar
  21. Wilson EL (2002) Three-dimensional static and dynamic analysis of structures. CSi Computers and Structures, BerkeleyGoogle Scholar
  22. Wu CC, Pian THH (1997) Non-conforming numerical analysis and hybrid method. Science Press, BeijingGoogle Scholar
  23. Xia Y, Hu P, Tang L (2012) Direct formulation of quadrilateral plane element with quasi-conforming method—into the forbidden zone of fem Lixue Xuebao/Chinese. J Theor Appl Mech 44:839–850. doi: 10.6052/0459-1879-12-105 Google Scholar
  24. Xu DS, Xiao RC, Wang Y, Ling DS (2009) Eight-node shell element based on incompatible modes. Commun Numer Methods Eng 25:103–119. doi: 10.1002/cnm.1108 MathSciNetCrossRefMATHGoogle Scholar
  25. Zhang HW, Zheng YG, Wu JK, Liu H, Fu ZD (2013) Generalized four-node plane rectangular and quadrilateral elements and their applications in the multiscale analysis of heterogeneous structures. Int J Multiscale Comput Eng 11:71–91CrossRefGoogle Scholar
  26. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, Butterworth-Heinemann, Amsterdam, OxfordMATHGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2015

Authors and Affiliations

  1. 1.School of Automotive Engineering, State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations