A Method for Online Identification of a Subset of Synchronous Generator Fundamental Parameters from Monitoring Systems Data

Abstract

Monitoring systems are common in small and large power plants, providing measurements of basic electrical, mechanical and thermal variables. These measurements can be used for the identification of the synchronous generator parameters. In this paper, a simple method for the identification of a subset of synchronous generator parameters, using basic measurements provided by monitoring systems, is proposed. The identification is performed in normal operating conditions using a synchronous machine simplified model suited for operating conditions under small disturbances. Three identification models are derived, each one depending on a subset of parameters. Three optimization subproblems are then solved by minimizing the residues between each model output and a system measurement. The resulting nonlinear least squares problems are solved by the interior-point method taking into account constraints on the parameters range. A method is proposed to estimate the load angle which is required in the identification. Results are presented for synthetic data and real data, from a 25 MVA generator in a hydroelectric power plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abido, M. A., & Abdel-Magid, Y. L. (1997). On-line identification of synchronous machines using radial basis function neural networks. IEEE Transactions on Power Systems, 12(4), 1500–1506. https://doi.org/10.1109/59.627848.

    Article  Google Scholar 

  2. Ahmadi, S., Karrari, M., & Malik, O. P. (2015). Synchronous generator parameter estimation using data collected with machine in closed-loop operation. Electric Power Components and Systems, 43(16), 1859–1871. https://doi.org/10.1080/15325008.2015.1057882.

    Article  Google Scholar 

  3. Cari, E.P.T., & Alberto, L.F.C. (2011) Parameter estimation of synchronous generators from different types of disturbances. In: 2011 IEEE Power and Energy Society General Meeting, pp 1–7. https://doi.org/10.1109/PES.2011.6039592

  4. de Mello, F. P., & Ribeiro, J. R. (1977). Derivation of synchronous machine parameters from tests. IEEE Transactions on Power Apparatus and Systems, 96(4), 1211–1218. https://doi.org/10.1109/T-PAS.1977.32443.

    Article  Google Scholar 

  5. Dehghani, M., & Nikravesh, S. (2008). Nonlinear state space model identification of synchronous generators. Electric Power Systems Research, 78(5), 926–940. https://doi.org/10.1016/j.epsr.2007.07.001.

    Article  Google Scholar 

  6. Fard, R. D., Karrari, M., & Malik, O. P. (2005). Synchronous generator model identification for control application using Volterra series. IEEE Transactions on Energy Conversion, 20(4), 852–858. https://doi.org/10.1109/TEC.2005.847997.

    Article  Google Scholar 

  7. Faria, V. A., Bernardes, J., & Bortoni, E. C. (2020). Parameter estimation of synchronous machines considering field voltage variation during the sudden short-circuit test. International Journal of Electrical Power and Energy Systems, 114, 105421. https://doi.org/10.1016/j.ijepes.2019.105421.

    Article  Google Scholar 

  8. Ghahremani, E., Karrari, M., & Malik, O. P. (2008). Synchronous generator third-order model parameter estimation using online experimental data. IET Generation, Transmission and Distribution, 2(5), 708. https://doi.org/10.1049/iet-gtd:20080175.

    Article  Google Scholar 

  9. Huang, J., Corzine, K. A., & Belkhayat, M. (2009). Online synchronous machine parameter extraction from small-signal injection techniques. IEEE Transactions on Energy Conversion, 24(1), 43–51. https://doi.org/10.1109/tec.2008.2008953.

    Article  Google Scholar 

  10. Huang, M., Li, W., & Yan, W. (2010). Estimating parameters of synchronous generators using square-root unscented Kalman filter. Electric Power Systems Research, 80(9), 1137–1144.

    Article  Google Scholar 

  11. IEEE-Std-1129. (1992). IEEE recommended practice for monitoring and instrumentation of turbine generators. IEEE Standard 1129 1–27.

  12. IEEE-Std-115. (2010). IEEE Guide for test procedures for synchronous machines Part I Acceptance and performance testing Part II Test procedures and parameter determination for dynamic analysis. IEEE Std 115-2009 (Revision of IEEE Std 115-1995), pp. 1–219.

  13. Karayaka, H. B., Keyhani, A., Heydt, G. T., Agrawal, B. L., & Selin, D. A. (2003). Synchronous generator model identification and parameter estimation from operating data. IEEE Transactions on Energy Conversion, 18(1), 121–126. https://doi.org/10.1109/tec.2002.808347.

    Article  Google Scholar 

  14. Kundur, P. (1994). Power system stability and control., EPRI power system engineering New York: McGraw-Hill.

    Google Scholar 

  15. Kyriakides, E., Heydt, G. T., & Vittal, V. (2004). On-line estimation of synchronous generator parameters using a damper current observer and a graphic user interface. IEEE Transactions on Energy Conversion, 19(3), 499–507. https://doi.org/10.1109/tec.2004.832057.

    Article  Google Scholar 

  16. Landgraf, TG., Cari, EPT., & Alberto, LFC. (2016) Online parameter estimation of synchronous generators from accessible measurements. In: 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), IEEE, pp 1–5

  17. Lin, K., Kyriakides, E., Heydt, GT., Logić, N., & Singh, B. (2010) Experience with synchronous generator parameter identification using a Kalman filter. In: IEEE PES General Meeting, IEEE, pp. 1–7

  18. Nocedal, J., & Wright, S. (2006). Numerical Optimization (2nd ed.). New York: Springer.

    Google Scholar 

  19. Pillutla, S., Keyhani, A., & Kamwa, I. (1999). Neural network observers for on-line tracking of synchronous generator parameters. IEEE Transactions on Energy Conversion, 14(1), 23–30. https://doi.org/10.1109/60.749143.

    Article  Google Scholar 

  20. Rodríguez, G. G., e Silva, A. S., & Zeni, N. (2017). Identification of synchronous machine parameters from field flashing and load rejection tests with field voltage variations. Electric Power Systems Research, 143, 813–824. https://doi.org/10.1016/j.epsr.2016.08.025.

    Article  Google Scholar 

  21. Sanchez-Gasca, J. J., Bridenbaugh, C. J., Bowler, C. E. J., & Edmonds, J. S. (1988). Trajectory sensitivity based identification of synchronous generator and excitation system parameters. IEEE Transactions on Power Systems, 3(4), 1814–1822. https://doi.org/10.1109/59.193000.

    Article  Google Scholar 

  22. Shamsollahi, P., & Malik, OP. (1996) On-line identification of synchronous generator using neural networks. In: Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 595–598. https://doi.org/10.1109/CCECE.1996.548223

  23. Twerdochlib, M., Miller, R. C., Lemak, T. A., Osborne, R. L., Repplier, C. C., Morrison, D. R., et al. (1988). Two recent developments in monitors for large turbine generators. IEEE Transactions on Energy Conversion, 3(3), 653–659. https://doi.org/10.1109/60.8081.

    Article  Google Scholar 

  24. Valverde, G., Kyriakides, E., Heydt, GT., & Terzija, V. (2011) On-line parameter estimation of saturated synchronous machines. In: 2011 IEEE Power and Energy Society General Meeting, IEEE, pp. 1–6

  25. Wamkeue, R., Kamwa, I., Dai-Do, X., & Keyhani, A. (1999). Iteratively reweighted least squares for maximum likelihood identification of synchronous machine parameters from on-line tests. IEEE Transactions on Energy Conversion, 14(2), 159–166. https://doi.org/10.1109/60.766971.

    Article  Google Scholar 

  26. Wang, L., & Jatskevich, J. (2006). A voltage-behind-reactance synchronous machine model for the emtp-type solution. IEEE Transactions on Power Systems, 21(4), 1539–1549. https://doi.org/10.1109/TPWRS.2006.883670.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Southern Brazil utility CEEE, specially engineer Jeferson M. Rodrigues, for technical support and AQTech engineers Tiago Matsuo and Bruno de Borba for installation and software development of the monitoring system used in the real data results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis Otavio S. Grillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grillo, L.O.S., Silva, A.S.e. & Freitas, F.L. A Method for Online Identification of a Subset of Synchronous Generator Fundamental Parameters from Monitoring Systems Data. J Control Autom Electr Syst (2021). https://doi.org/10.1007/s40313-021-00697-x

Download citation

Keywords

  • Parameters identification
  • Synchronous generator
  • Online data
  • Numerical optimization