Skip to main content
Log in

Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Autonomous Unmanned Aerial Vehicles (UAVs) become an important field of research in which multiple applications can be designed, such as surveillance, deliveries, and others. Thus, studies aiming to improve the performance of these vehicles are being proposed: from new sensing solutions to more robust control techniques. Additionally, the autonomous UAV has challenges in flight stages as the landing. This procedure needs to be performed safely with a reduced error margin in static and dynamic targets. To solve this imperative issue, many applications with computer vision and control theory have been developed. Therefore, this paper presents an alternative method to train a multilayer perceptron neural network based on fuzzy Mamdani logic to control the landing of a UAV on an artificial marker. The advantage of this method is the reduction in computational complexity while maintaining the characteristics and intelligence of the fuzzy logic controller. Results are presented with simulation and real tests for static and dynamic landing spots. For the real experiments, a quadcopter with an onboard computer and ROS is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abu-Jbara, K., Alheadary, W., Sundaramorthi, G., & Claudel, C. (2015). A robust vision-based runway detection and tracking algorithm for automatic UAV landing. In 2015 International conference on unmanned aircraft systems (ICUAS) (pp. 1148–1157). IEEE.

  • Amazon.com. Amazon prime air. (2015). http://www.amazon.com/b?node=8037720011.

  • Benavidez, P., Lambert, J., Jaimes, A., & Jamshidi, M. (2014). Landing of an ardrone 2.0 quadcopter on a mobile base using fuzzy logic. In World Automation Congress (WAC), 2014 (pp. 803–812). IEEE.

  • Carvalho, J. P., Jucá, M., Menezes, A., Olivi, L., Bessa, A., & Marcato, A. (2016). Landing an UAV in a dynamical target using fuzzy control and computer vision. In Congresso Brasileiro de Automática (CBA), 2016.

  • Carvalho, J. P., Jucá, M., Menezes, A., Olivi, L., Bessa, A., & Marcato, A. (2017). Lecture notes in electrical engineering, chapter Autonomous UAV outdoor flight controlled by an embedded system using Odroid and ROS, (402 ed, pp. 423–437). Springer.

  • Cocchioni, F., Pierfelice, V., Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Ippoliti, G., & Longhi, S. (2014). Unmanned ground and aerial vehicles in extended range indoor and outdoor missions. In 2014 International conference on unmanned aircraft systems (ICUAS) (pp. 374–382). IEEE.

  • Delgado, F. S., Carvalho, J. P., Coelho, T. V. N., & Dos Santos, A. B. (2016). An optical fiber sensor and its application in UAVs for current measurements. Sensors, 16(11), 1800.

    Article  Google Scholar 

  • Freire, F. P., Martins, N. A., & Splendor, F. (2018). A simple optimization method for tuning the gains of PID controllers for the autopilot of cessna 182 aircraft using model-in-the-loop platform. Journal of Control, Automation and Electrical Systems, 29, 1–10.

    Article  Google Scholar 

  • Gautam, A., Sujit, P., & Saripalli, S. (2014). A survey of autonomous landing techniques for UAVs. In 2014 International conference on unmanned aircraft systems (ICUAS), (pp. 1210–1218). IEEE.

  • Gui, Y., Guo, P., Zhang, H., Lei, Z., Zhou, X., Du, J., et al. (2013). Airborne vision-based navigation method for UAV accuracy landing using infrared lamps. Journal of Intelligent and Robotic Systems, 72(2), 197–218.

    Article  Google Scholar 

  • Guo, X., Denman, S., Fookes, C., Mejias, L., & Sridharan, S. (Nov 2014) Automatic UAV forced landing site detection using machine learning. In 2014 International conference on digital lmage computing: Techniques and applications (DlCTA) (pp. 1–7). https://doi.org/10.1109/DICTA.2014.7008097.

  • HardKernel. Odroid. (2015). http://www.hardkernel.com/. Accessed 1 Aug 2018.

  • Karuppanan, P., & Mahapatra, K. K. (2012). PI and fuzzy logic controllers for shunt active power filtera report. ISA Transactions, 51(1), 163–169.

    Article  Google Scholar 

  • Kim, J., Jung, Y., Lee, D., & Shim, D. H. (2016). Landing control on a mobile platform for multi-copters using an omnidirectional image sensor. Journal of Intelligent & Robotic Systems, 84(1–4), 529–541.

    Article  Google Scholar 

  • Lee, D., Ryan, T., & Kim, H. J. (2012). Autonomous landing of a vtol UAV on a moving platform using image-based visual servoing. In 2012 IEEE international conference on robotics and automation (ICRA) (pp. 971–976). IEEE.

  • Lee, H., Jung, S., & Shim, D. H. (2016). Vision-based UAV landing on the moving vehicle. In 2016 International conference on unmanned aircraft systems (ICUAS) (pp. 1–7). IEEE.

  • Ma, Z., Wang, C., Niu, Y., Wang, X., & Shen, L. (2018). A saliency-based reinforcement learning approach for a UAV to avoid flying obstacles. Robotics and Autonomous Systems, 100, 108–118.

    Article  Google Scholar 

  • Maravall, D., de Lope, J., & Fuentes, J. P. (2015). Vision-based anticipatory controller for the autonomous navigation of an UAV using artificial neural networks. Neurocomputing, 151, 101–107.

    Article  Google Scholar 

  • Meier, L., Honegger, D., & Pollefeys, M. (2015). Px4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 6235–6240). https://doi.org/10.1109/ICRA.2015.7140074.

  • Meier, L., Tanskanen, P., Fraundorfer, F., & Pollefeys, M. (2011). The pixhawk open-source computer vision framework for mavs. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1), C22.

    Google Scholar 

  • Moore, D. (2007). The basic practice of statistics. New York: W.H. Freeman. ISBN 9780716774631.

    Google Scholar 

  • Nex, F., & Remondino, F. (2014). Uav for 3d mapping applications: A review. Applied Geomatics, 6(1), 1–15.

    Article  Google Scholar 

  • Olivares-Mendez, M. A., Kannan, S., & Voos, H. (2015). Vision based fuzzy control autonomous landing with UAVs: From v-rep to real experiments. In 2015 23th Mediterranean conference on control and automation (MED) (pp. 14–21). IEEE.

  • Pereira, G. A. S., Resende, G. D., & Gonçalves, V. M. (2018). Pouso de veículos aéreos utilizando campos vetoriais e visãocomputacional [Landing of aircraft using vector fields and computervision]. In XXII Congresso Brasileiro de Automatica. SBA.

  • Precup, R.-E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control. Computers in Industry, 62(3), 213–226.

    Article  Google Scholar 

  • QGroundControl. Mavlink. (2016). http://qgroundcontrol.org/mavlink/start. Accessed 1 Aug 2018.

  • Rathinam, S., Almeida, P., Kim, Z., Jackson, S., Tinka, A., Grossman, W., & Sengupta, R. (2007). Autonomous searching and tracking of a river using an uav. In American control conference, 2007. ACC’07 (pp. 359–364). IEEE.

  • ROS. Robot operating system. (2015). www.ros.org/. Accessed 1 Aug 2018.

  • Saska, M., Krajnik, T., & Pfeucil, L. (2012). Cooperative micro-UAV-UGV autonomous indoor surveillance. In International multi-conference on systems, signals and devices (pp. 1–6).

  • Silva, N. B., Fontes, J. V., Inoue, R. S., & Branco, K. R. (2018). Dynamic inversion and gain-scheduling control for an autonomous aerial vehicle with multiple flight stages. Journal of Control, Automation and Electrical Systems, 29(3), 328–339.

    Article  Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2008). Pattern recognition (4th ed.). Cambridge: Academic Press. ISBN 1597492728, 9781597492720.

    MATH  Google Scholar 

  • Tyagi, K., & Sharma, A. (2014). An adaptive neuro fuzzy model for estimating the reliability of component-based software systems. Applied Computing and Informatics, 10(1–2), 38–51.

    Article  Google Scholar 

  • Wang, X. (2013). Takeoff/landing control based on acceleration measurements for vtol aircraft. Journal of the Franklin Institute, 350(10), 3045–3063.

    Article  MathSciNet  MATH  Google Scholar 

  • Wenzel, K. E., Masselli, A., & Zell, A. (2011). Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. Journal of Intelligent and Robotic Systems, 61, 221–238.

    Article  Google Scholar 

  • Yang, S., Ying, J., Lu, Y., & Li, Z. (2015). Precise quadrotor autonomous landing with srukf vision perception. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 2196–2201). IEEE.

Download references

Acknowledgements

The authors would like to thank CAPES, CNPq, FAPEMIG, UFJF, PPEE, INERGE, ANEEL and CTG Brasil for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luís Marques Marcato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, J.P.C., Marcato, A.L.M., de Aguiar, E.P. et al. Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic. J Control Autom Electr Syst 30, 522–531 (2019). https://doi.org/10.1007/s40313-019-00465-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00465-y

Keywords

Navigation