Skip to main content

Advertisement

Log in

Reference Signal Injection in Induction Motors Drives to Electrical Failures Detection

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper shows an alternative method to electrical fault diagnosis in three-phase induction motors using reference signal injection. The proposal is based on the insertion of search reference harmonic signals in the supply voltage by the frequency inverter module of the induction machine and the observation of the signals of the electric current of the motor, preprocessed through the FFT and machine signature component analysis. In order to obtain a greater precision of fault classification and state of degradation through intelligent systems, results are validated by different algorithms whose performance are compared in the following methods: k nearest neighbors, naive Bayes, support vector machine, multilayer perceptron and decision tree. The practical results for the tests with controlled simulation of the electrical faults of broken rotor bars and short circuit in stator windings show the capacity that this insertion technique has when it is used as a tool to diagnose three-phase induction motors. The five proposals of intelligent systems result in a classification with success rates of \(93\%\) to \(100\%\) in different classes, separated into types of faults and according to the degradation intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attoui, I., Fergani, N., Boutasseta, N., Oudjani, B., & Deliou, A. (2017). A new timefrequency method for identification and classification of ball bearing faults. Journal of Sound and Vibration, 397, 241.

    Article  Google Scholar 

  • Aydin, I., Karakose, M., & Akin, E. (2012). An adaptive artificial immune system for fault classification. Journal of Intelligent Manufacturing, 23(5), 1489.

    Article  Google Scholar 

  • Aydin, I., Karakose, M., & Akin, E. (2014). An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space. ISA Transactions, 53(2), 220.

    Article  Google Scholar 

  • Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Godoy, W. F., & Palácios, R. H. C. (2017). Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research, 143, 347.

    Article  Google Scholar 

  • Cusido, J., Rosero, J., Romeral, L., Ortega, J. A., & Garcia, A. (2006). New techniques for fault detection analysis by injecting additional frequency test. In Proceedings of the IEEE conference instrumentation and measurement technology (pp. 2087–2090).

  • Cusido, J., Rosero, J., Romeral, L., Ortega, J. A., & Garcia, A. (2006). New fault detection techniques for induction motors. Eletrical Power Quality and Utilization, 2(1), 39.

    Google Scholar 

  • de Jesus Romero-Troncoso, R. (2017). Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors. IEEE Transactions on Industrial Informatics, 13(3), 1291.

    Article  Google Scholar 

  • George, P. L., & John, H. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 338–345).

  • Gritli, Y., Bellini, A., Rossi, C., Casadei, D., Filippetti, F., & Capolino, G. A. (2017). IEEE 11th international symposium on diagnostics for electrical machines, power electronics and drives (sdemped) (pp. 77–84).

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. SIGKDD Explorations Newsletter, 11(1), 10.

    Article  Google Scholar 

  • Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann, p 744.

  • Haykin, S. (2009). Neural networks and learning systems. Ontario: Pearson Education.

    Google Scholar 

  • Irfan, M., Saad, N., Ibrahim, R., & Asirvadam, V. S. (2017). Condition monitoring of induction motors via instantaneous power analysis. Journal of Intelligent Manufacturing, 28(6), 1259.

    Article  Google Scholar 

  • Karabadji, N. E. I., Seridi, H., Khelf, I., Azizi, N., & Boulkroune, R. (2014). Improved decision tree construction based on attribute selection and data sampling for fault diagnosis in rotating machines. Engineering Applications of Artificial Intelligence, 35, 71.

    Article  Google Scholar 

  • Lakehal, A., & Ramdane, A. (2017). Fault prediction of induction motor using bayesian network model. In 2017 International conference on electrical and information technologies (ICEIT) (pp. 1–5).

  • Lawrynowicz, A. (2014). Pattern based feature construction in semantic data mining. International Journal on Semantic Web and Information Systems, 10, 28. https://doi.org/10.4018/ijswis.2014010102.

    Article  Google Scholar 

  • Li, C., de Oliveira, J. V., Cerrada, M., Pacheco, F., Cabrera, D., Sanchez, V., et al. (2016). Observer-biased bearing condition monitoring: From fault detection to multi-fault classification. Engineering Applications of Artificial Intelligence, 50, 287.

    Article  Google Scholar 

  • Likitjarernkul, T., Sengchuai, K., Duangsoithong, R., Chalermyanont, K., & Prasertsit, A. (2017). Pca based feature extraction for classification of statorwinding faults in induction motors. Pertanika Journal Science and Technology, 25(S), 197.

    Google Scholar 

  • Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33.

    Article  Google Scholar 

  • Mabrouk, A. E., & Zouzou, S. E. (2015). Diagnosis of rotor faults in three-phase induction motors under time-varying loads. In 2015 IEEE 10th international symposium on diagnostics for electrical machines, power electronics and drives (SDEMPED) (pp. 373–379).

  • Martin-Diaz, I., Morinigo-Sotelo, D., Duque-Perez, O., Arredondo-Delgado, P., Camarena-Martinez, D., & Romero-Troncoso, R. (2017). Analysis of various inverters feeding induction motors with incipient rotor fault using high-resolution spectral analysis. Electric Power Systems Research, 152, 18.

    Article  Google Scholar 

  • Martínez-Morales, J. D., Palacios-Hernández, E. R., & Campos-Delgado, D. U. (2018). Multiple-fault diagnosis in induction motors through support vector machine classification at variable operating conditions. Electrical Engineering, 100, 1–15.

    Article  Google Scholar 

  • Mata-Castrejón, P. V. D., Villegas-Ortega, A., Asiaín-Olivares, T. I., & Ruiz-Vega, D. (2015). Evaluation of progressive deterioration of a squirrel-cage rotor, with a condition monitoring system that implements the sideband methodology. In 2015 IEEE international autumn meeting on power, electronics and computing (ROPEC) (pp. 1–6).

  • Mustafa, M. O., Varagnolo, D., Nikolakopoulos, G., & Gustafsson, T. (2016). Detecting broken rotor bars in induction motors with model-based support vector classifiers. Control Engineering Practice, 52, 15.

    Article  Google Scholar 

  • Naha, A., Samanta, A. K., Routray, A., & Deb, A. K. (2016). A method for detecting half-broken rotor bar in lightly loaded induction motors using current. IEEE Transactions on Instrumentation and Measurement, 65(7), 1614.

    Article  Google Scholar 

  • Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Rajeswaran, N., Swarupa, M. L., Rao, T. S., & Chetaswi, K. (2018). Hybrid artificial intelligence based fault diagnosis of svpwm voltage source inverters for induction motor. Materials Today: Proceedings, 5(1, Part 1), 565.

    Article  Google Scholar 

  • Saddam, B., Aissa, A., Ahmed, B. S., & Abdellatif, S. (2017). Detection of rotor faults based on hilbert transform and neural network for an induction machine. In 2017 5th international conference on electrical engineering—Boumerdes (ICEE-B) (pp. 1–6).

  • Singh, G., Kumar, C. A., & Naikan, V. N. A. (2015). Effectiveness of current envelope analysis to detect broken rotor bar and inter turn faults in an inverter fed induction motor drive. In 2015 international conference on power and advanced control engineering (ICPACE) (pp. 191–194).

  • Steinwart, I., & Christmann, A. (2008). Support vector machines (Information Science and Statistics). New York: Springer.

    MATH  Google Scholar 

  • Thomson, W. T., & Culbert, I. (2017). Current signature analysis for condition monitoring of cage induction motors: Industrial application and case histories (Vol. 1). Hoboken: Wiley.

    Google Scholar 

  • van der Broeck, H. W., Skudelny, H., & Stanke, G. V. (1988). Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Transactions on Industry Applications, 24(1), 142.

    Article  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Yahia, K., Cardoso, A. J. M., Zouzou, S. E., & Gueddidi, S. (2012). Broken rotor bars diagnosis in an induction motor fed from a frequency converter: Experimental research. International Journal of System Assurance Engineering and Management, 3(1), 40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of CNPq (Processes 474290/2008-5, 473576/2011-2, 552269/2011-5, and 405228/2016-3), Fundação Araucária (Process 06/56093-3) and FAPESP (Process 2011/17610-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Goedtel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gongora, W.S., da Silva, I.N., Goedtel, A. et al. Reference Signal Injection in Induction Motors Drives to Electrical Failures Detection. J Control Autom Electr Syst 30, 242–252 (2019). https://doi.org/10.1007/s40313-019-00442-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00442-5

Keywords

Navigation