Advertisement

State-Space Recursive Fuzzy Modeling Approach Based on Evolving Data Clustering

  • Luís Miguel Magalhães Torres
  • Ginalber Luiz de Oliveira Serra
Article
  • 77 Downloads

Abstract

In this paper, an online evolving fuzzy Takagi–Sugeno state-space model identification approach for multivariable dynamic systems is proposed. The proposed methodology presents an evolving fuzzy clustering algorithm based on the concept of recursive density estimation for online antecedent structure adaptation according to the data. For estimation of the minimum realization state-space models in the consequent of the fuzzy rules is proposed a recursive methodology based on the eigensystem realization fuzzy algorithm using the system fuzzy Markov parameters obtained recursively from experimental data. Experimental results from the modeling of multivariable nonlinear evaporator process are presented.

Keywords

Evolving fuzzy systems Multivariable dynamic systems State space System identification 

References

  1. Angelov, P. (2013). Autonomous learning systems: From data streams to knowledge in real-time. New York: Wiley.Google Scholar
  2. Angelov, P., & Kordon, A. (2010). Adaptive inferential sensors based on evolving fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(2), 529–539.CrossRefGoogle Scholar
  3. Angelov, P. P., & Zhou, X. (2008). Evolving fuzzy-rule-based classifiers from data streams. IEEE Transactions on Fuzzy Systems, 16(6), 1462–1475.  https://doi.org/10.1109/TFUZZ.2008.925904.CrossRefGoogle Scholar
  4. Birek, L., Petrovic, D., & Boylan, J. (2014). Water leakage forecasting: The application of a modified fuzzy evolving algorithm. Applied Soft Computing, 14(Part B), 305–315.  https://doi.org/10.1016/j.asoc.2013.05.021.CrossRefGoogle Scholar
  5. Castro-Garcia, R., Tiels, K., Agudelo, O. M., & Suykens, J. A. K. (2017). Hammerstein system identification through best linear approximation inversion and regularisation. International Journal of Control,.  https://doi.org/10.1080/00207179.2017.1329550.Google Scholar
  6. Cervantes, J. S., Yu, W., Salazar-Cruz, S., & Chairez, I. (2016). Takagi–Sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems,.  https://doi.org/10.1109/TFUZZ.2016.2612697.Google Scholar
  7. Chang, P. C., Wu, J. L., & Lin, J. J. (2016). A Takagi–Sugeno fuzzy model combined with a support vector regression for stock trading forecasting. Applied Soft Computing, 38(Supplement C), 831–842.CrossRefGoogle Scholar
  8. Cheng, C., Peng, Z., Zhang, W., & Meng, G. (2017). Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mechanical Systems and Signal Processing, 87, 340–364.CrossRefGoogle Scholar
  9. Cheung, N. J., Ding, X. M., & Shen, H. B. (2014). Optifel: A convergent heterogeneous particle swarm optimization algorithm for Takagi–Sugeno fuzzy modeling. IEEE Transactions on Fuzzy Systems, 22(4), 919–933.  https://doi.org/10.1109/TFUZZ.2013.2278972.CrossRefGoogle Scholar
  10. Costa, E., & Serra, G. L. (2017). Swarm optimization based adaptive fuzzy control design from robust stability criteria. Journal of Intelligent & Fuzzy Systems, 32(3), 1787–1804.CrossRefzbMATHGoogle Scholar
  11. de Jesús, Rubio J., & Bouchachia, A. (2017). MSAFIS: An evolving fuzzy inference system. Soft Computing, 21(9), 2357–2366.CrossRefGoogle Scholar
  12. De Moor, B., De Gersem, P., De Schutter, B., & Favoreel, W. (1997). DAISY: A database for identification of systems. Journal A, 38, 4–5.Google Scholar
  13. Forrai, A. (2017). System identification and fault diagnosis of an electromagnetic actuator. IEEE Transactions on Control Systems Technology, 25(3), 1028–1035.  https://doi.org/10.1109/TCST.2016.2582147.CrossRefGoogle Scholar
  14. Huang, M., Ma, Y., Wan, J., & Chen, X. (2015). A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process. Applied Soft Computing, 27, 1–10.  https://doi.org/10.1016/j.asoc.2014.10.034.CrossRefGoogle Scholar
  15. Jafari, M., Salimifard, M., & Dehghani, M. (2014). Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. ISA Transactions, 53(4), 1243–1252.  https://doi.org/10.1016/j.isatra.2013.12.034.CrossRefGoogle Scholar
  16. Juang, J. N. (1994). Applied system identification. Englewood Cliffs, NJ: Prentice Hall.zbMATHGoogle Scholar
  17. Kumar, E. V., Raaja, G. S., & Jerome, J. (2016). Adaptive PSO for optimal LQR tracking control of 2 DOF laboratory helicopter. Applied Soft Computing, 41(Supplement C), 77–90.  https://doi.org/10.1016/j.asoc.2015.12.023.CrossRefGoogle Scholar
  18. Li, J., & Qiliang, F. (2017). Combined separable signals based neuro-fuzzy Hammerstein–Wiener model. Memetic Computing, 9(3), 245–259.CrossRefGoogle Scholar
  19. Lin, Y. Y., Chang, J. Y., & Lin, C. T. (2013). Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Transactions on Neural Networks and Learning Systems, 24(2), 310–321.  https://doi.org/10.1109/TNNLS.2012.2231436.CrossRefGoogle Scholar
  20. Liu, Y. J., Tong, S., Li, D. J., & Gao, Y. (2016). Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Transactions on Fuzzy Systems, 24(5), 1147–1158.CrossRefGoogle Scholar
  21. Lughofer, E., Pratama, M., & Skrjanc, I. (2017). Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation. IEEE Transactions on Fuzzy Systems,.  https://doi.org/10.1109/TFUZZ.2017.2753727.Google Scholar
  22. Luo, X., & Song, Y. (2014). Adaptive predictive control: A data-driven closed-loop subspace identification approach. In Abstract and applied analysis (Vol. 2014). Hindawi Publishing Corporation.Google Scholar
  23. Maachou, A., Malti, R., Melchior, P., Battaglia, J. L., Oustaloup, A., & Hay, B. (2014). Nonlinear thermal system identification using fractional Volterra series. Control Engineering Practice, 29, 50–60.  https://doi.org/10.1016/j.conengprac.2014.02.023.CrossRefGoogle Scholar
  24. Maciel, L., Ballini, R., & Gomide, F. (2017). Evolving possibilistic fuzzy modeling for realized volatility forecasting with jumps. IEEE Transactions on Fuzzy Systems, 25(2), 302–314.  https://doi.org/10.1109/TFUZZ.2016.2578338.CrossRefGoogle Scholar
  25. Mzyk, G., & Wachel, P. (2017). Kernel-based identification of Wiener–Hammerstein system. Automatica, 83, 275–281.  https://doi.org/10.1016/j.automatica.2017.06.038.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Noshadi, A., Shi, J., Lee, W. S., Shi, P., & Kalam, A. (2016). System identification and robust control of multi-input multi-output active magnetic bearing systems. IEEE Transactions on Control Systems Technology, 24(4), 1227–1239.  https://doi.org/10.1109/TCST.2015.2480009.CrossRefGoogle Scholar
  27. Prawin, J., & Rao, A. R. M. (2017). Nonlinear identification of MDOF systems using Volterra series approximation. Mechanical Systems and Signal Processing, 84, 58–77.  https://doi.org/10.1016/j.ymssp.2016.06.040.CrossRefGoogle Scholar
  28. Precup, R. E., Filip, H. I., Rdac, M. B., Petriu, E. M., Preitl, S., & Drago, C. A. (2014). Online identification of evolving Takagi–Sugeno–Kang fuzzy models for crane systems. Applied Soft Computing, 24, 1155–1163.  https://doi.org/10.1016/j.asoc.2014.01.013.CrossRefGoogle Scholar
  29. Raj, R., & Sivanandan, K. (2017). Comparative study on estimation of elbow kinematics based on EMG time domain parameters using neural network and ANFIS NARX model. Journal of Intelligent & Fuzzy Systems, 32(1), 791–805.CrossRefGoogle Scholar
  30. Rocha, O., & Serra, G. (2017). Recursive fuzzy instrumental variable based evolving neuro-fuzzy identification for non-stationary dynamic system in a noisy environment. Fuzzy Sets and Systems,.  https://doi.org/10.1016/j.fss.2017.05.016.Google Scholar
  31. Rotondo, D., Puig, V., Nejjari, F., & Witczak, M. (2015). Automated generation and comparison of Takagi–Sugeno and polytopic quasi-LPV models. Fuzzy Sets and Systems, 277, 44–64.  https://doi.org/10.1016/j.fss.2015.02.002.MathSciNetCrossRefGoogle Scholar
  32. Sa’ad, H. H. Y., Isa, N. A. M., Ahmed, M. M., & Sa’d, A. H. Y. (2018). A robust structure identification method for evolving fuzzy system. Expert Systems with Applications, 93(Supplement C), 267–282.  https://doi.org/10.1016/j.eswa.2017.10.011.CrossRefGoogle Scholar
  33. Sahoo, D. M., & Chakraverty, S. (2017). Functional link neural network approach to solve structural system identification problems. Neural Computing and Applications.  https://doi.org/10.1007/s00521-017-2907-x.
  34. Salgado, C. M., Viegas, J. L., Azevedo, C. S., Ferreira, M. C., Vieira, S. M., & Sousa, J. M. (2017). Takagi–Sugeno fuzzy modeling using mixed fuzzy clustering. IEEE Transactions on Fuzzy Systems,.  https://doi.org/10.1109/TFUZZ.2016.2639565.Google Scholar
  35. Souza, F. A., Arajo, R., & Mendes, J. (2016). Review of soft sensor methods for regression applications. Chemometrics and Intelligent Laboratory Systems, 152(Supplement C), 69–79.  https://doi.org/10.1016/j.chemolab.2015.12.011.CrossRefGoogle Scholar
  36. Subramanian, R. G., & Elumalai, V. K. (2016). Robust MRAC augmented baseline LQR for tracking control of 2 DOF helicopter. Robotics and Autonomous Systems, 86(Supplement C), 70–77.  https://doi.org/10.1016/j.robot.2016.08.004.CrossRefGoogle Scholar
  37. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics SMC, 15(1), 116–132.  https://doi.org/10.1109/TSMC.1985.6313399.CrossRefzbMATHGoogle Scholar
  38. Tsai, S. H., & Chen, Y. W. (2017). A novel identification method for Takagi–Sugeno fuzzy model. Fuzzy Sets and Systems,.  https://doi.org/10.1016/j.fss.2017.10.012.Google Scholar
  39. Wu, C. Y., Tsai, J. H., Guo, S. M., Shieh, L. S., Canelon, J., Ebrahimzadeh, F., et al. (2015). A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems. Journal of the Franklin Institute, 352(3), 1119–1151.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Xia, X., Zhou, J., Xiao, J., & Xiao, H. (2016). A novel identification method of volterra series in rotor-bearing system for fault diagnosis. Mechanical Systems and Signal Processing, 66, 557–567.  https://doi.org/10.1016/j.ymssp.2015.05.006.CrossRefGoogle Scholar
  41. Zhao, H., Gao, S., He, Z., Zeng, X., Jin, W., & Li, T. (2014). Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture. IEEE Transactions on Industrial Electronics, 61(8), 4171–4182.  https://doi.org/10.1109/TIE.2013.2288196.CrossRefGoogle Scholar
  42. Zhou, P., Lu, S. W., & Chai, T. (2014). Data-driven soft-sensor modeling for product quality estimation using case-based reasoning and fuzzy-similarity rough sets. IEEE Transactions on Automation Science and Engineering, 11(4), 992–1003.  https://doi.org/10.1109/TASE.2013.2288279.CrossRefGoogle Scholar
  43. Zhu, Y., van Overschee, P., de Moor, B., & Ljung, L. (1994). Comparison of three classes of identification methods. IFAC Proceedings Volumes, 27(8), 169–174.  https://doi.org/10.1016/S1474-6670(17)47710-X.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2018

Authors and Affiliations

  • Luís Miguel Magalhães Torres
    • 1
  • Ginalber Luiz de Oliveira Serra
    • 2
  1. 1.Federal Institute of Education, Sciences and TechnologyImperatrizBrazil
  2. 2.Federal Institute of Education, Sciences and TechnologySão LuísBrazil

Personalised recommendations