Skip to main content
Log in

Soft Sensors to Monitoring a Multivariate Nonlinear Process Using Neural Networks

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In general, industrial processes have a multivariable nature, with multiple inputs and multiple outputs. Such systems are more difficult to monitor and control due to interactions between the input and output variables. Focusing on these issues, the development of soft sensors to monitor multivariate nonlinear processes using neural networks is proposed. Experiments were performed to monitor the pressure and flow values on an experimental platform (fluid transport system) using developed soft sensors. With the monitoring using soft sensor, it is possible to make processes more reliable, with better performance and with less difficulty in detecting and solving possible failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anthony, E. J., Talbot, R. E., Jia, L., & Granatstein, D. L. (2000). Agglomeration and fouling in three industrial petroleum coke- red cfbc boilers due to carbonation and sulfation. Energy & Fuels, 14, 1021–1027.

    Article  Google Scholar 

  • Arsie, I., Cricchio, A., Cesare, M. D., Lazzarini, F., Pianese, C., & Sorrentino, M. (2017). Neural net-work models for virtual sensing of NOx emissions in automotive diesel engines with least square-based adaptation. Control Engineering Practice, 61, 11–20.

    Article  Google Scholar 

  • Buondonno, G. & Luca, A. D. (2016), Combining real and virtual sensors for measuring interaction forces and moments acting on a robot. In International conference on intelligent robots and systems (IROS).

  • Corriou, J.-P. (2018). Process control: Theory and applications (2nd ed.). Cham: Springer.

    Book  Google Scholar 

  • Cybenko, G. (1989). Approximation by superpositions of a sigmoid function. Mathematics of Control, Signals, and Systems, 2(4), 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Ell, S. M., & Trabachini, A. (2011). Loss of charge in forced conduits. Retrieved January 18, 2018 from http://pt.scribd.com/doc/72710149/Perda-de-Carga-Tubulacao-Singular-Ida-Des.

  • Engelbrecht, A. P. (2007). Computational intelligence—An introduction (2nd ed.). Pretoria: Wiley, University of Pretoria South Africa.

    Book  Google Scholar 

  • Fortuna, L., Graziani, S., & Xibilia, M. G. (2007). Soft sensor for monitoring and control of industrial processes. London: Editora Springer.

    MATH  Google Scholar 

  • Fox, R. W., McDonald, A. T., & Pritchard, P. J. (2017). Introduction to Fluid Mechanics, 8 edn. India: Wiley.

    MATH  Google Scholar 

  • Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Ontario: Prentice Hall.

    Google Scholar 

  • Joseph, B., & Brosilow, C. (1978). Inferential control of processes: Part i, ii e iii. American Institute of Chemical Engineers (AIChE Journal), 24, 485–509.

    Article  Google Scholar 

  • Kadlec, P., Gabrys, B., & Strandt, S. (2008). Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 33, 795–814.

    Article  Google Scholar 

  • Kah, P., Layus, P., Hiltunen, E., & Martikainen, J. (2014). Real-time weld process monitoring. Advanced Materials Research, 933, 117–124.

    Article  Google Scholar 

  • Liu, L., Chen, J. & Xu, L. (2008). Realization and application research of BP neural network based on MATLAB. In International seminar on future biomedical information engineering.

  • Lopes, A. M., Lapa, J. P. & Oliveira, L. A. (2006). Turbulent laminar regime transition unit—practical workbook. Retrieved January 18, 2018 from https://woc.uc.pt/dem/getFile.do?tipo=6&id=362.

  • Mansano, R. K., Godoy, E. P., & Porto, A. J. V. (2014). The bene ts of soft sensor and multi-rate control for the implementation of wireless networked control systems. Sensors, 14, 24441–24461.

    Article  Google Scholar 

  • Mansoori, G. (2001), Deposition and fouling of heavy organic oils and other compounds. In 9th International conference on properties an phases equilibria for product and process design.

  • Markopoulos, A. P., Georgiopoulos, S., & Manolakos, D. E. (2016). On the use of back propagation and ra-dial basis function neural networks in surface rough-ness prediction’. Journal of Industrial Engineering International, 12, 389–400.

    Article  Google Scholar 

  • Marques, J. A. A. S. & Sousa, J. J. O. (1997). Formula of colebrook—white: old but current. explicit solutions. In 3rd Symposium on hydraulics and water re-sources in Portuguese-speaking Countries (Silusba).

  • Melo, T. R., Bezerra, M. M., da Silva, J. J., & da Rocha Neto, J. S. (2017). Implementation of a decentralized pid control system on an experimental platform using labview. Latin America Transactions, 15, 213–218.

    Article  Google Scholar 

  • Ortega, E. (2012). Calculation of the friction energy. http://www.unicamp.br/fea/ortega/aulas/aula05\_fator\_atrito.ppt.

  • Palcios, R. H. C., da Silva, I. N., Goedtel, A., Godoy, W. F., & Oleskovicz, M. (2014). A robust neural method to estimate torque in three-phase induction motor. Journal of Control, Automation and Electrical Systems, 25, 493–502.

    Google Scholar 

  • Samarasinghe, S. (2006). Neural Networks for Applied Sciences and Engineering. Boca Raton: Auerbach Publications.

    Book  MATH  Google Scholar 

  • Saptoro, A. (2014). State of the art in the develop-ment of adaptive soft sensors based on just-in-time models’. International Conference and Workshop on Chemical Engineering, 9, 226–234.

    Google Scholar 

  • Severson, K., Chaiwatanodom, P., & Braatz, R. D. (2015). Perspectives on process monitoring of industrial systems’. International Federation of Automatic Control (IFAC), 48, 931–939.

    Google Scholar 

  • Tiwari, S. K., & Kaur, G. (2017). Model reduction by new clustering method and frequency response matching’. Journal of Control, Automation and Electrical Systems, 28, 78–85.

    Article  Google Scholar 

  • Wang, H., Oh, Y., & Yoon, E. S. (1998). Strategies for modeling and control of nonlinear chemical processes using neural networks’. Computers & Chemical Engineering, 22, 832–862.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq and Copele-DEE for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalia Arthur Brunet Monteiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, N.A.B., da Silva, J.J. & da Rocha Neto, J.S. Soft Sensors to Monitoring a Multivariate Nonlinear Process Using Neural Networks. J Control Autom Electr Syst 30, 54–62 (2019). https://doi.org/10.1007/s40313-018-00426-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-00426-x

Keywords

Navigation